• 제목/요약/키워드: kinematics error

검색결과 104건 처리시간 0.023초

5축 가공의 특이영역에서 공구궤적 오차 - Part I: 궤적오차 모델링 - (Tool-trajectory Error at the Singular Area of Five-axis Machining - Part I: Trajectory Error Modeling -)

  • 소범식;정융호;윤재득
    • 한국CDE학회논문집
    • /
    • 제14권1호
    • /
    • pp.18-24
    • /
    • 2009
  • This paper proposes an analytical method of evaluating the maximum error by modeling the exact tool path for the tool traverse singular region in five-axis machining. It is known that the NC data from the inverse kinematics transformation of 5-axis machining can generate singular positions where incoherent movements of the rotary axes can appear. These lead to unexpected errors and abrupt operations, resulting in scoring on the machined surface. To resolve this problem, previous methods have calculated several tool positions during a singular operation, using inverse kinematics equations to predict tool trajectory and approximate the maximum error. This type of numerical approach, configuring the tool trajectory, requires much computation time to obtain a sufficient number of tool positions in a region. We have derived an analytical equation for the tool trajectory in a singular area by modeling the tool operation into a linear and a nonlinear part that is a general form of the tool trajectory in the singular area and that is suitable for all types of five-axis machine tools. In addition, we have evaluated the maximum tool-path error exactly, using our analytical model. Our algorithm can be used to modify NC data, making the operation smoother and bringing any errors to within tolerance.

지적 원격조작시스템의 수동모드 개선을 위한 기하학적 해석에 관한 연구 (A Study on a Geometrical Analysis for the Manual Mode of an Advanced Teleoperator System)

  • 이순요;김창대;박세권
    • 대한인간공학회지
    • /
    • 제7권2호
    • /
    • pp.31-44
    • /
    • 1988
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment then the automatic mode changes into the manual mode. The operation by the control program and the operation by a human recover the error in the manual mode. The system resumes the automatic mode and continues the given task. It is necessary to improve the manual mode in order to make the best use of a man-robot system, as a part of the human interface technique. Therefore, the error recovery task is performed by combining the operation by the control program representing autonomy of a robot and the operation by a human representing versatility of a human operator effectively in the view point of human factors engineering. The geometric inverse kinematics is used for the calculation of the robot joint values in the operation by the control program. The singularity operation error and the parameter operation error often occur in this procedure. These two operation errors increase the movement time of the robot and the coordinate reading time, during the error recovery task. A singularity algorithm, parameter algorithm and fuzzy control are studied so as to remove the disadvantages of geometric inverse kinematics. And the geometric straight line motion is studied so as to improve the disadvantages of the operation by a human.

  • PDF

지적 원격조작시스템의 일환으로서 에러회복 전문가 시스템에 관한 연구 (A study on an error recovery expert system in the advanced teleoperator system)

  • 이순요;염준규;오제상;이창민
    • 대한인간공학회지
    • /
    • 제6권2호
    • /
    • pp.19-28
    • /
    • 1987
  • If an error occurs in the automatic mode when the advanced teleoperator system performs a task in hostile environment, then the mode changes into the manual mode. The operation by program and the operation by hyman recover the error in the manual mode. The system resumew the automatic mode and continues the given task. In order to utilize the inverse kinematics as means of the operation by program in the manual mode, Lee and Nagamachi determined the end point of the robot trajectory planning which varied with the height of the task object recognized by a T.V monitor, solved the end point by the fuzzy set theory, and controlled the position of the robot hand by the inverse kinematics and the posture of the robot hand by the operation by human. But the operation by human did take a lot of task time because the position and the posture of the robot hand were separately controlled. To reduce the task time by human, this paper developes an error recovery expert system (ERES). The position of the robot hand is controlled by the inverse kinematics of the cartesian coordinate system to the end point which is deter- mined by the fuzzy set theory. The posture of the robot hand is controlled by the modulality of the robot hand's motion which is made by the posture of the task object. The knowledge base and the inference engine of the ERES is developed using the muLISP-86 language. The experimental results show that the average task time by human the ERES which was performed by the integration of the position and the posture control of the robot hand is shorter than that of the research, done by the preliminary experiment, which was performed by the separation of the position and the posture control of the robot hand. A further study is likely to research into an even more intelligent robot system control usint a superimposed display and digitizer which can present two-dimensional coordinate of the work space for the convenience of human interaction.

  • PDF

초미세수술 로봇의 안정적인 원격조작을 위한 제어시스템 설계 (Control System Design for Stable Teleoperation of Supermicrosurgical Robot)

  • 김건욱;델가도 라이마리우스;인용석
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.169-175
    • /
    • 2024
  • In this study, we developed control system for stable teleoperation of supermicrosurgical robot platform. The supermicrosurgical robot platform is designed to perform precise anastomosis with micro vessels ranging from 0.3 mm to 0.7 mm. The robotic assistance could help more precise manipulation then manual surgery with the help of motion scaling and tremor filtering. However, since the robotic system could cause several vulnerabilities, control system for stable teleoperation should be preceded. Therefore, we first designed control system including inverse kinematics solver, clutch error interpolator and finite state machine. The inverse kinematics solver was designed to minimized inertial motion of the manipulator and tested by applying orientational motion. To make robot slowly converges to the leader's orientation when orientational error was occurred during clutch, the SLERP was used to interpolate the error. Since synchronized behavior of two manipulators and independent behavior of manipulator both exist, two layered finite state machines were designed. Finally, the control system was evaluated by experiment and showed intended behavior, while maintaining low pose error.

얀센 메커니즘을 적용한 보행 로봇 다리의 운동학 해석 (Kinematic Analysis of A Walking Robot Leg Based on Jansen Mechanism)

  • 김영두;방정현
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제5회(2016년)
    • /
    • pp.424-428
    • /
    • 2016
  • This paper presents the kinematics of a walking robot leg based on Jansen mechanism. By using simple mathematics, all trajectories of walking robot leg links can be calculated. A foot point trajectory is used to evaluate the performance of a walking robot leg. Trial and Error method is used to find a best combination of link lengths under certain restrictions. All simulations are performed by Matlab. Ground score, drag score, step size, foot lift, instant speed, and average speed of foot point trajectories are used for selecting the best one.

  • PDF

5축 CNC 공작기계의 오차합성모델링 및 보정 알고리즘 (Error Synthesis Modeling and Compensation Algorithm of a 5-Axis CNC Machine Tool)

  • 양승한;이철수
    • 한국정밀공학회지
    • /
    • 제16권8호
    • /
    • pp.122-129
    • /
    • 1999
  • A 5-axis CNC machine tool is more useful compared with a 3-axis machine tool, because the position and the orientation of a tool tip can be controlled simultaneously. Unlike the 3-axis machine tool, the 5-axis machine tool has the volumetric position error and volumetric orientation error due to the quasi-static error of each machine tool joint which is a major source of machined part error. So, the generalized error synthesis model of the 5-axis CNC machine tool was developed to predict and to compensate for the volumetric position error and the volumetric orientation error. It was proposed that a compensation algorithm to correct simultaneously the volumetric position error and the volumetric orientation error of the 5-axis CNC machine by error inverse kinematic.

  • PDF

착용형 관성센서 및 인체 하지부 기구학 기반의 보행자 속도추정에 관한 연구 (Pedestrian Walking Velocity Estimation based on Wearable Inertial Sensors and Lower-limb Kinematics)

  • 김명규;김종경;이동훈
    • 대한기계학회논문집A
    • /
    • 제41권9호
    • /
    • pp.799-807
    • /
    • 2017
  • 본 논문은 하지부의 각 분절에 부착된 착용형 관성센서의 자세 및 각속도 정보와 하지부 기구학을 기반으로 착용자의 보행속도를 추정하는 방법에 관한 연구를 다룬다. 보행 주기 중 발바닥과 지면이 완전히 접촉되지 않는 구간에서는 골반부에 장착된 관성센서의 가속도 출력을 적분하여 보행속도를 추정할 수 있다. 이 때, 보행 시 골반부의 기울어짐으로 인하여 발생되는 가속도의 측정오차의 누적 영향을 최소화하기 위하여, 하지부 기구학을 기반으로 추정된 보행속도를 매 보행 주기마다 골반 관성센서의 가속도 출력신호 적분 초기값으로 갱신한다. 그 결과 6분 가량의 야외 보행 실험을 수행한 결과, 오차 누적에 의한 영향은 관찰되지 않았으며, 보행속도 추정 오차의 RMS는 0.08m/s 이하인 것으로 확인되었다.

한 개의 선형 여유센서를 갖는 스튜어트 플랫폼의 실시간 순기구학 (Real-Time Forward Kinematics of the 6-6 Stewart Platform with One Extra Linear Sensor)

  • 이태영;심재경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.541-547
    • /
    • 2000
  • This paper presents the closed-form forward kinematics of the 6-6 Stewart platform of planar base and moving platform. Based on algebraic elimination method and with one extra linear sensor, it first derives an 8th-degree univariate equation and then finds tentative solution sets out of which the actual solution is to be selected. In order to provide more exact solution despite the error between measured sensor value and the theoretical one, a correction method is also used. The overall procedure requires so little computation time that it can be efficiently used for realtime applications. In addition, unlike the iterative schemes e.g. Newton-Raphson, the algorithm does not require initial estimates of solution and is free of the problems that it does not converge to actual solution within limited time. The presented method has been implemented in C language and a numerical example is given to confirm the effectiveness and accuracy of the developed algorithm.

  • PDF

열변형 해석 기구를 통한 선상 가열에서의 가열선 수정에 관한 연구 (A Mechanics-Based Determination of Heating Lines in Line Heating Process)

  • 김용균;신종계
    • 대한조선학회논문집
    • /
    • 제39권2호
    • /
    • pp.45-51
    • /
    • 2002
  • 선체는 많은 다중곡(compound curvature)을 가진 판들로 이루어져 있으며 이러한 판들을 가공하기 위해서, 조선소에서는 선상 가열(line heating) 방법이 널리 이용되어 왔다. 선상 가열법에서 가열선을 결정하는 방법으로 지금까지는 기하 변형해석을 이용하여 가열선을 제시하여 왔다. 그러나 기하해석으로 구한 가열선에 대한 역학적 검증이 이루어지지 않고 있으며 여러 가열선 중 어떤 가공선을 선택할 것인가에 대한 연구도 이루어지지 않고 있다. 본 논문에서는 기하해석을 통해 판의 가열정보를 얻었을 때 이를 역학적으로 검증하여 실제로 판에 가열정보대로 가공을 하였을 때 나타날 수 있는 판의 거동을 예측하였다. 또한 본 논문에서는 적정 가열선을 찾는 전체 과정을 제시하였다. 가공정보로부터 예측된 가공형상을 구한 후 목적형상과 비교하여 가공형상이 목적형상의 오차범위 내에 존재할 때까지 가열선의 조정변수를 변화시켜 적절한 가공정보를 획득하였다.