• Title/Summary/Keyword: kimchi, microorganisms

Search Result 114, Processing Time 0.022 seconds

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) During the Ripening and Fermentation-Part 2

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2008
  • The Chinese cabbage kimchi, baechoo-kimchi, is the most popular type of kimchi in Korea. This study was performed to investigate the changes of index microorganisms (aerobic bacteria, psychrotrophilic bacteria, coliforms, and Escherichia coli), lactic acid bacteria, pH, and acidity of kimchi during the long-term fermentation and ripening. A homemade-style traditional Korean baechoo-kimchi, was prepared from Chinese cabbage, red pepper, green onion, garlic, ginger, and salt-fermented anchovy sauce, and then incubated at $10^{\circ}C$ for 28 days. In the baechoo-kimchi, the number of aerobic bacteria increased with time. The number of psychrotrophilic bacteria maintained their numbers $(10^4CFU/g)$ in the kimchi during the fermentation. Coliforms and E. coli were not detected in the kimchi. The pH of kimchi decreased and the acidity of kimchi increased over time. Lactic acid bacteria, which are representative of fermentative microorganisms in the kimchi process showed rapid growth in the earlier stage of fermentation and increased steadily after 7 days. The counts of lactic acid bacteria were at a level of $10^4CFU/g$ early in the fermentation stage, reaching a level of $10^8CFU/g$ after 14 days, and at this point pH was 4.18 and acidity reached 0.63, indicating that the optimal state of kimchi fermentation. This study suggests that the lactic acid bacteria which were proliferated in kimchi during the ripening and fermentation could contribute to improving the taste and flavor of kimchi and inhibit the growth of pathogenic microorganisms that might exist in kimchi.

Preparation of Kimchi Containing Bifidobacterim animalis DY-64

  • Chae Myoung-Hee;Jhon Deok-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.431-437
    • /
    • 2006
  • Aero-tolerant microorganisms were isolated from healthy Koreans over the age of 95 years. The microorganisms were then identified based on their morphological and biochemical characteristics and 16S rDNA sequences. The growth properties of the isolated strains were investigated in kimchi. The characteristics of kimchi containing the microorganisms were studied microscopically, physicochemically, and organoleptically. Among 7 aero-tolerant strains, a strain with a 16S rDNA sequence exhibiting 99% homology with Bifidobacterim animalis strain B83 was selected and named B. animalis DY-64. The new strain showed a better acid resistance and salt resistance (p<0.05) than B. animalis ATCC 25527. After 15 days of fermentation in kimchi, the viability of B. animalis DY-64 was about 10%, and the kimchi had a better overall edible quality than conventional kimchi. Thus, it was found that the application of B. animalis DY-64 to kimchi preparation produced a good overall edible quality.

Biosynthesis of L-Ascorbic Acid by Microorganisms in Kimchi Fermentation Process

  • Cheigh, Hong-Sik;Rina Yu;Park, Hyun-Jeong;Jun, Hong-Ki
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 1996
  • Kinchi is and important source of various vitamins, minerals, dietary fiber, organic acids and other nutrients. In order to get a basic information for developing vitamins-rich funtional kimchi, we investigated microorganisms which are capable of synthesis of vitamin C in Kimchi system. Microorganisms isolated from aliquots of kimchi were screened and cultured by using MRS or nutrient agar medium. L-Ascorbic acid produced by microorganism in medium was measured with high performance liquid chromatography. As the result, we isolated two bacteria strins N7 and N5202 preducing L-ascorbic acid from the kimchi system. Morphological and Gram staining experiment showed that N7 was Gram positive bacilli, while N5202 was Gram negative. There were also several bacteria that were considered to synthesizs erythorbic acid which is an analog of ascorbic acid. These results suggested that vitamin C-rich functional food could be developed by using the kimchi microorganisms.

  • PDF

Changes of Index Microorganisms and Lactic Acid Bacteria of Korean Fermented Vegetables (Kimchi) during the Ripening and Fermentation-Part 1 (김치의 숙성 및 발효중 오염지표미생물과 유산균의 변화-제1보)

  • Kim, Jong-Gyu;Yoon, Joon-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.79-85
    • /
    • 2005
  • This study was undertaken to investigate the changes of index microorganisms and lactic acid bacteria of traditional Korean fermented vegetables (kimchi) during the ripening and fermentation period. A type of kimchi, baechoo-kimchi, was prepared and stored at $10^{\circ}C$ for 8 days. The numbers of the total aerobic bacteria, psychrotrophilic bacteria, coliform bacteria, and Escherichia coli in the kimchi and also in raw materials of the kimchi (Chinese cabbage, green onion, ginger, garlic, and red pepper) were counted using appropriate media. The highest number of aerobic bacteria was detected from ginger, then red pepper, then garlic, then Chinese cabbage, and lowest number from green onion. The highest number of psychrotrophilic bacteria was detected from red pepper, then Chinese cabbage, then garlic, then ginger, and the lowest number from green onion. Coliforms and E. coli were not detected from all of the raw materials of kimchi. Total aerobic bacteria and lactic acid bacteria of the kimchi showed gradually increasing during ripening and fermentation. The number of psychrotrophilic bacteria showed a similar level in the kimchi. Coliform bacteria were detected at the 3rd, 4th, and 5th day of the kimchi fermentation period, although they were not detected from the raw materials of the kimchi. However, the bacteria were not detected in the kimchi after 6 days. E. coli was not detected in all kimchi samples. The pH value of the kimchi gradually decreased, and acidity increased over fermentation period. This study indicates that there was contamination of coliform bacteria during the process of kimchi preparation, and lactic acid bacteria proliferated in the kimchi during fermentation inhibited the growth of coliforms. More research is needed to evaluate the inhibitory effects of each raw materials of kimchi.

The Effect of Low Molecular Weight Chitosans on the Characteristics of Kimchi during Fermentation (저분자 chitosan이 배추김치 모델시스템의 보존성에 미치는 영향)

  • Kim, Kwang-Ok;Moon, Hyung-Ah;Jeon, Dong-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.420-427
    • /
    • 1995
  • This study was conducted to investigate the preservative effect of low molecular weight chitosans on kimchi(2% salt concentration) during fermentation at $20^{\circ}C$. The pH and total acidity of control kimchi were lower and higher, respectively than those of kimchi samples containing chitosan. Reducing sugar content tended to be lower in control kimchi than in kimchi samples containing chitosan until 6 days of fermentation. Malic acid content was lower in control kimchi than in kimchi samples containing chitosan until 4 days of fermentation. Succinic acid content was higher in control kimchi than in kimchi samples containing chitosan at the 2 days of fermentation. Content of lactic and acetic acid also was higher in control kimchi than in kimchi samples containing chitosan at the 4 days of fermentation. The number of total microorganisms and those of microorganisms of Leuconostoc genus and Lactobacillus plantarum were higher in control kimchi than in kimchi samples containing chitosan. The number of microorganisms of Leuconostoc genus was lower in kimchi samples containing chitosan with the lower molecular weight chitosan than those with the higher molecular weight chitosan. Intensity of sensory sour taste and staled flavor were higher in control kimchi than in kimchi samples containing chitosan. There was not much difference in sensory firmness among kimchi samples, but control kimchi was evaluated slightly weaker than kimchi samples containing chitosan. Off-flavor was evaluated as weak in all the kimchi samples.

  • PDF

Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation

  • Su-Ji Kim;Sanghyun Ha;Yun-Mi Dang;Ji Yoon Chang;So Yeong Mun;Ji-Hyoung Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.622-633
    • /
    • 2024
  • For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.

Starter Cultures for Kimchi Fermentation

  • Lee, Mo-Eun;Jang, Ja-Young;Lee, Jong-Hee;Park, Hae-Woong;Choi, Hak-Jong;Kim, Tae-Woon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.559-568
    • /
    • 2015
  • Kimchi is a traditional Korean vegetable product that is naturally fermented by various microorganisms present in the raw materials. Among these microorganisms, lactic acid bacteria dominate the fermentation process. Natural fermentation with unsterilized raw materials leads to the growth of various lactic acid bacteria, resulting in variations in the taste and quality of kimchi, which may make it difficult to produce industrial-scale kimchi with consistent quality. The use of starter cultures has been considered as an alternative for the industrial production of standardized kimchi, and recent trends suggest that the demand for starter cultures is on the rise. However, several factors should be carefully considered for the successful application of starter cultures for kimchi fermentation. In this review, we summarize recent studies on kimchi starter cultures, describe practical problems in the application of industrial-scale kimchi production, and discuss the directions for further studies.

Effects of Traditional Salt on the Quality Characteristics and Growth of Microorganisms from Kimchi (자염(煮鹽)으로 담근 배추김치의 발효숙성 중 이화학적.관능적 특성 및 자염이 김치발효 미생물의 생육에 미치는 영향)

  • Kim, Hye-Ran;Kim, Mee-Ree
    • Journal of the Korean Society of Food Culture
    • /
    • v.25 no.1
    • /
    • pp.61-69
    • /
    • 2010
  • This study was carried out to investigate the effects of various kinds of commercial salts, including sun-dried (Korea), purified, and traditional salts on the chemical and sensory properties and growth of microorganisms involved in kimchi fermentation. Kimchi was prepared by salting in 10% NaCl solution for 2 hours followed by addition of other spices and fermentation at $20^{\circ}C$. The decreases in pH suggested that kimchi fermentation can be classified into 3 steps: initial, intermediate, and final stages. In texture analysis, the hardness and fracturability of traditional salt kimchi were higher than those of regular kimchi. From the sensory evaluation test for kimchi, sensory scores were high for traditional salt addition, especially taste, overall preference and texture. Among various microorganisms related to kimchi fermentation, the growth of Leuconostoc mesenteroides, Lactobacillus plantarum, Pichia membranaefaciens and Escherichia coli were examined. Based on the conditions of kimchi fermentation, a 2% and 5% concentration of each salt were studied. Also, the conditions of the cultures at $37^{\circ}C$ were examined. There was no considerable difference in the growth of Leuconostoc mesenteroides, Lactobacillus plantarum, Escherichia coli in the different kinds of salts. However, the growth of Pichia membranaefaciens was strongly inhibited by a 5% concentration of traditional salt during incubation at $37^{\circ}C$.

The Effects of Water Extracts from Thyme(Thymus vulgaris L.) and Tarragon (Artemisia dracuncculus L.) on Shelf-life and Quality of Kimchi (Thyme(Thymus vulgaris L.)과 Tarragon(Artemisia dracunculus L.) 물추출 첨가가 김치의 품질과 보존에 미치는 영향)

  • 김미경;김옥미
    • Food Science and Preservation
    • /
    • v.5 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • The effects of the water extracts from thyme(TM) and tarragon(TG) on shelf-life and quality of kimchi were investigated by measuring the changes in pH, acidity, number of total microorganisms, number of Lactobacillii and Leuconostoc during fermentation at 1$0^{\circ}C$, and were tested for antimicrobial activities against Lactobacillus plantarum and Leuconostoc mesenteroides. TM and TG were extracted with water, ethyl ether, ethyl acetate and ethanol. Water, ethyl ether, ethyl acetate and ethanol extracts of TM showed antimicrobial activities against Lactobacillus plantarum and did not observed against Leuconostoc mesenteroides. On the other hand, water, ethyl acetate and ethanol extracts of TG showed antimicrobial activities against Leuconostoc mesenteroides and did not observed against Lactobacillus plantarum. The decrease of pH and the increase of acidity showed lower in kimchi prepared by adding water extracts from TM than in products from TG. The number of total microorganisms were also detected less in the kimchi prepared by adding water extracts from TM. And, the properties of barkless of kimchi measured instrumentally were higher for kimchi prepared by adding water extracts from TM, also maintaining good crispness. The optimal addition amounts of both TM and TG for good overall and spicy taste of kimchi were 0.03%. The results suggested the possible use of the extracts of TM and TG can be successfully used for the quality and extension of shelf-life of kimchi.

  • PDF

Retardation of Kimchi Fermentation and Growth Inhibition of Related Microorganisms by Tea Catechins (차엽카테킨의 김치발효 지연 및 관련 미생물의 증식억제)

  • Wee, Ji-Hyang;Park, Keun-Hyung
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1275-1280
    • /
    • 1997
  • The possible use of tea catechins as natural preservatives for kimchi was investigated in this study. Tea catechins separated from tea leaves had antimicrobial activity against microorganisms related to kimchi fermentation, such as Leuconostoc mesenteroides, Lactobacillus plantarum, Lactobacillus brevis, Pediococcus cerevisiae, Streptococcus faecalis. The degree of antimicrobial activity of catechins were different among microorganisms; that is 2 mg/mL to Leuconostoc mesenteroides, Lactobacillus plantarum, and Pediococcus cerevisiae, 4 mg/mL to Streptococcus faecalis, and 5 mg/mL to Lactobacillus brevis; however, Saccharomyces cerevisiae can not be inhibited. The effect of tea catechins on retardation of kimchi fermentation was tested by measuring changes in pH and acidity. The changes of pH and acidity of baechu-kimchi and mul-kimchi were remarkably inhibited by adding the tea catechins at the level of 2 mg/g fresh baechu. These results suggest that the tea catechins can be successfully used for the extension of shelf-life of kimchi.

  • PDF