• Title/Summary/Keyword: kidney uptake

Search Result 141, Processing Time 0.021 seconds

Comparative susceptibility of different cell lines for culture of Toxoplasma gondii in vitro (톡소플라스마 곤디의 세포내 배양에 있어서 세포 주에 따른 감수성 비교)

  • 박병규;문형로
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.3
    • /
    • pp.215-222
    • /
    • 1993
  • In order to establish a useful cell culture system for T gondii we compared the degree of proliferation of T gondii tachyzoites among 8 different cell lines: 2 kinds of normal animal cells (MDCK-canine kidney cells; Vero-monkey kidney cells) and 6 kinds of human tumor cells (A 549, PC 14-lung cancer cells; SNU 1, SNU 16. Mlm 45-stomach cancer cells; HL-60-promyelocytic leukemia cells), through morphological observation and 3H-uracil uptake assay. The degree of susceptibility to infection with T gondii tachyzoites was highest in A 549 and PC 14 cells, medium in Vero, HL-60, MDCK and SNU 1, and lowest in SNU 16 and MBm 45 cells. The kinetics of T gondii multiplication during the post-Infection 60 hours were higllly dependent upon the dose of tachyzoites administered and the duration among the 8 tested fur the growth and multiplication of T gondii in vitro.

  • PDF

Studies on the Transport of Organic Acids in the Rabbit Kindey Slice, with Special Reference to the Role of Various Electrolytes (가토신피질절편(家兎腎皮質切片)에서의 유기산이동(有機酸移動)에 관(關)한 연구(硏究) -특(特)히 전해질(電解質)의 영향(影響)에 대(對)하여-)

  • Chung, Soon-Tong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.59-71
    • /
    • 1968
  • The uptake of phenolsulfonphthalein (PSP) and of paraaminohippuric acid (PAH) by cortical slices of the rabbit kidney was investigated while varying the composition of medium. The overall uptake of these substances displayed typical active transport characteristics and was significantly enhanced in presence of acetate. When the phosphate buffer was used the optimal pH was 7.4 for both substances. However, when the tris-buffer was used the optimal pH was 7.4 for PSP and 8.3 for PAH. Removal of $Na^+$ from the medium resulted in a significant reduction in the uptake. Similar results, though lesser in magnitude, were obtained when either $K^+\;or\;Ca^{++}$ was removed from the medium. However, there was no additive effect when $K^+\;and/or\;Ca^{++}$ were additionally removed from the $Na^+-free$ medium. The presence of ${NH_4}^+$ greatly reduced while $Li^+\;and\;Mg^{++}$ moderately reduced the uptake of both substances. However, choline had no effect. In substrate-leached slices, acetate greatly enhance the uptake of organic acids; but this action was not demonstrable in absence of $Na^+,\;K^+\;or\;Ca^{++}$.

  • PDF

Effects of Ethanol on $Na^+-dependent$ Solute Uptake in Rabbit Renal Brush-Border Membrane Vesicles

  • Kim, Yong-Keun;Ko, Sun-Hee;Woo, Jae-Suk;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • This study was undertaken to examine the effect of ethanol on $Na^+-dependent$ transport systems (glucose, phosphate, and dicarboxylate) in renal brush-border membrane vesicles (BBMV). Ethanol inhibited $Na^+-dependent$ uptakes of glucose, phosphate, and succinate in a dose-dependent manner, but not the uptakes of $Na^+-dependent.$ The $H^+/TEA$ antiport was reduced by 8% ethanol. Kinetic analysis showed that ethanol caused a decrease in $V_{max}$ of three transport systems, leaving $K_m$ values unchanged. Ethanol decreased phlorizin binding, which was closely correlated with the decrease in $V_{max}$ of $Na^+-glucose$ uptake. These results indicate that ethanol inhibits $Na^+-dependent$ uptakes of glucose, phosphate, and dicaboxylate and that the reduction in $V_{max}$ of $Na^+-glucose$ uptake is caused by a decrease in the number of active carrier proteins in the membrane.

  • PDF

A case of tacrolimus-induced encephalopathy after kidney transplantation

  • Kim, Myoung-Uk;Kim, Sae-Yoon;Son, Su-Min;Park, Yong-Hoon
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.1
    • /
    • pp.40-44
    • /
    • 2011
  • We present a case of tacrolimus-induced encephalopathy after successful kidney transplantation. An 11-year-old girl presented with sudden onset of neurologic symptoms, hypertension, and psychiatric symptoms, with normal kidney function, after kidney transplantation. The symptoms improved after cessation of tacrolimus. Magnetic resonance imaging (MRI) showed acute infarction of the middle cerebral artery (MCA) territory in the right frontal lobe. Three days later, she had normal mental function and maintained normal blood pressure with left hemiparesis. Follow-up MRI was performed on D19, showing new infarct lesions at both cerebral hemispheres. Ten days later, MRI showed further improvement, but brain single photon emission computed tomography (SPECT) showed mild reduction of uptake in both the anterior cingulate gyrus and the left thalamus. One month after onset of symptoms, angiography showed complete resolution of stenosis. However, presenting as a mild fine motor disability of both hands and mild dysarthria, what had been atrophy at both centrum semiovale at 4 months now showed progression to encephalomalacia. There are two points of interest in this case. First, encephalopathy occurred after administration of tacrolimus and improved after discontinuation of the drug. Second, the development of right-side hemiplegia could not be explained by conventional MRI; but through diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) of white matter tract, visualization was possible.

Effects of Insulin and IGFs on Phosphate Uptake in Primary Cultured Rabbit Renal Proximal Tubule Cells

  • Han, Ho-Jae;Park, Kwon-Moo
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.63-76
    • /
    • 1996
  • The aim of present study was to characterize phosphate uptake and to investigate the mechanism for the insulin and insulin-like growth factor(IGF) stimulation of phosphate uptake in primary cultured rabbit renal proximal tubule cells. Results were as follows : 1. The primary cultured proximal tubule cells had accumulated $6.68{\pm}0.70$ nmole phosphate/mg protein in the presence of 140 mM NaCl and $2.07{\pm}0.17$ nmole phosphate/mg protein in the presence of 140 mM KCl during a 60 minute uptake period. Raising the concentration of extracellular phosphate to 100 mM$(48.33{\pm}1.76\;pmole/mg\;protein/min)$ induced decrease in phosphate uptake compared with that in control cells maintained in 1 mM phosphate$(190.66{\pm}13.01\;pmole/mg\;protein/min)$. Optimal phosphate uptake was observed at pH 6.5 in the presence of 140 mM NaCl. Phosphate uptake at pH 7.2 and pH 7.9 decreased to $83.06{\pm}5.75%\;and\;74.61{\pm}3.29%$ of that of pH 6.5, respectively. 2. Phosphate uptake was inhibited by iodoacetic acid(IAA) or valinomycin treatment $(62.41{\pm}4.40%\;and\;12.80{\pm}1.64%\;of\;that\;of\;control,\;respectively)$. When IAA and valinomycin were added together, phosphate uptake was inhibited to $8.04{\pm}0.61%$ of that of control. Phosphate uptake by the primary proximal tubule cells was significantly reduced by ouabain treatment$(80.27{\pm}6.96%\;of\;that\;of\;control)$. Inhibition of protein and/or RNA synthesis by either cycloheximide or actinomycin D markedly attenuated phosphate uptake. 3. Extracellular CAMP and phorbol 12-myristate 13 acetate(PMA) decreased phosphate uptake in a dose-dependent manner in all experimental conditions. Treatment of cells with pertussis toxin or cholera toxin inhibited phosphate uptake. cAMP concentration between $10^{-6}\;M\;and\;10^{-4}\;M$ significantly inhibited phosphate uptake. Phosphate uptake was blocked to about 25% of that of control at 100 ng/ml PMA. 3-Isobutyl-1-methyl-xanthine(IBMX) inhibited phosphate uptake. However, in the presence of IBMX, the inhibitory effect of exogenous cAMP was not significantly potentiated. Forskolin decreased phosphate transport. Acetylsalicylic acid did not inhibit phosphate uptake. The 1,2-dioctanoyl-sn-glycorol(DAG) and 1-oleoyl-2-acetyl-sn- glycerol(OAG) showed a inhibitory effect. However, staurosporine had no effect on phosphate uptake. When PMA and staurosporine were treated together, inhibition of phosphate uptake was not observed. In conclusion, phosphate uptake is stimulated by high sodium and low phosphate and pH 6.5 in the culture medium. Membrane potential and intracellular energy levels are also an important factor fer phosphate transport. Insulin and IGF-I stimulate phosphate uptake through a mechanisms that involve do novo protein and/or RNA synthesis and decrease of intracellular cAMP level. Also protein kinase C(PKC) is may play a regulatory role in transducing the insulin and IGF-I signal for phosphate transport in primary cultured proximal tubule cells.

  • PDF

Hydrogen Peroxide-induced Alterations in Na+-phosphate Cotransport in Renal Epithelial Cells

  • Jung, Soon-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.2
    • /
    • pp.83-92
    • /
    • 2009
  • This study was undertaken to examine the effect of oxidants on membrane transport function in renal epithelial cells. Hydrogen peroxide ($H_2O_2$) was used as a model oxidant and the membrane transport function was evaluated by measuring $Na^+$-dependent phosphate ($Na^+$-Pi) uptake in opossum kidney (OK) cells. $H_2O_2$ inhibited $Na^+$-Pi uptake in a dose-dependent manner. The oxidant also caused loss of cell viability in a dose-dependent fashion. However, the extent of inhibition of the uptake was larger than that in cell viability. $H_2O_2$ inhibited $Na^+$-dependent uptake without any effect on $Na^+$-independent uptake. $H_2O_2$-induced inhibition of $Na^+$-Pi uptake was prevented completely by catalase, dimethylthiourea, and deferoxamine, suggesting involvement of hydroxyl radical generated by an iron-dependent mechanism. In contrast, antioxidants Trolox, N,N'-diphenyl-p-phenylenediamine, and butylated hydroxyanisole did not affect the $H_2O_2$ inhibition. Kinetic analysis indicated that $H_2O_2$ decreased Vmax of $Na^+$-Pi uptake with no change in the Km value. Phosphonoformic acid binding assay did not show any difference between control and $H_2O_2$-treated cells. $H_2O_2$ also did not cause degradation of $Na^+$-Pi transporter protein. Reduction in $Na^+$-Pi uptake by $H_2O_2$ was associated with ATP depletion and direct inhibition of $Na^+$-$K^+$-ATPase activity. These results indicate that the effect of $H_2O_2$ on membrane transport function in OK cells is associated with reduction in functional $Na^+$-pump activity. In addition, the inhibitory effect of $H_2O_2$ was not associated with lipid peroxidation.

  • PDF

Selective Cytotoxicity of New Platinum (II) Complex Containing 1,2-Diaminopropane (1,2-디아미노프로판을 배위자로 한 백금(II) 착체의 선택적 세포독성)

  • Rho, Young-Soo;Lee, Kyung-Tae;Chang, Sung-Goo;Jung, Jee-Chang
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.494-499
    • /
    • 1998
  • As part of a drug discovery program to discover more effective platinum-based anticancer drugs, a series of platinum complexes of 1,2-bis(diphenylphosphino)ethane(1,2-diaminopro pane)platinum(II)dinitrate (KHPC-070) has been evaluated in vitro against various tumor cell lines and normal kidney cells. The structure of this new compound was determined by elemental analysis, infrared spectroscopy (IR) and $^{13}carbon$ nuclear magnetic resonance (NMR). With the use of nine tumor cell lines, KHPC-070 exhibited a comparable cytotoxic to cisplatin. The cytotoxicity of KHPC-070 in normal cells was quite less than that of cisplatin using 3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and [$^3H$]-thymidine uptake tests in rabbit renal proximal tubular cells and human renal cortical cells. Based on these results, KHPC-070 is considered to have more selective cytotoxicity toward cancer cells than normal human/rabbit kidney cells.

  • PDF

Effects of insulin and IGF on growth and functional differentiation in primary cultured rabbit kidney proximal tubule cells - Effects of IGF-I on Na+ uptake - (초대배양된 토끼 신장 근위세뇨관세포의 성장과 기능분화에 대한 insulin과 IGF의 효과 - Na+ uptake에 대한 IGF-I의 효과 -)

  • Han, Ho-jae;Park, Kwon-moo;Lee, Jang-hern;Yang, IL-suk
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.4
    • /
    • pp.783-794
    • /
    • 1996
  • It has been suggested that ion transport systems are intimately involved in mediating the effects of growth regulatory factors on the growth of a number of different types of animal cells in vivo. The functional importance of the apical membrane $Na^+/H^+$ antiporter in the renal proximal tubule is evidenced by estimates that this transporter mediates the reabsorption of approximately one third of the filtered load of sodium and the bulk of the secretion of hydrogen ions. This study was designed to investigate the pathway utilized by IGF-I in regulating sodium transport in primary cultured renal proximal tubule cells. Results were as follows : 1. $Na^+$ was observed to accumulate in the primary cells as a function of time. Raising the concentration of extracellular NaCl induced an decrease in $Na^+$ uptake compared with control cells in a dose dependent manner. The rate of $Na^+$ uptake into the primary cells was about two times higher in the absence of NaCl($40.11{\pm}1.76pmole\;Na^+/mg\;protein/min$) than in the presence of 140mM NaCl($17.82{\pm}0.94pmole\;Na^+/mg\;protein/min$) at the 30 minute uptake. 2. $Na^+$ uptake was inhibited by IAA($1{\times}10^{-4}M$) or valinomycin($5{\times}10^{-6}M$) treatment($50.51{\pm}4.04$ and $57.65{\pm}2.27$ of that of control, respectively). $Na^+$ uptake by the primary proximal tubule cells was significantly increased by ouabain($5{\times}10^{-5}M$) treatment($140.23{\pm}3.37%$ of that of control). When actinomycin D($1{\times}10^{-7}M$) or cycloheximide($4{\times}10^{-5}M$) was applied, $Na^+$ uptake was decreased to $90.21{\pm}2.39%$ or $89.64{\pm}3.69%$ of control in IGF-I($1{\times}10^{-5}M$) treated cells, respectively. 3. Extracellular cAMP decreased $Na^+$ uptake in a dose-dependent manner($10^{-8}-10^{-4}M$). IBMX($5{\times}10^{-5}M$) also inhibited $Na^+$ uptake. Treatment of cells with pertussis toxin(50pg/ml) or cholera toxin($1{\mu}g/ml$) inhibited $Na^+$ uptake. Extracellular PMA decreased $Na^+$ uptake in a dose-dependent manner(1-100ng/ml). 100 ng/ml PMA concentration significantly inhibited $Na^+$ uptake in IGF-I treated cells. However, staurosporine($1{\times}10^{-7}M$) had no effect on $Na^+$ uptake. When PMA and staurosporine were added together, the inhibition of $Na^+$ uptake was not observed. In conclusion, sodium uptake in primary cultured rabbit renal proximal tubule cells was dependent on membrane potentials and intracellular energy levels. IGF-I stimulates sodium uptake through mechanisms that involve some degree of de novo protein and/or RNA synthesis, and cAMP and/or PKC pathway mediating the action mechanisms of IGF-I.

  • PDF

Functional Characteristics of Neutral Amino Acid Transporter in Opossum Kidney (OK) Cells

  • Woo, Jae-Suk;Park, Moon-Hwan;Oh, Sae-Ok;Jung, Jin-Sup;Kim, Yong-Keun;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.185-193
    • /
    • 1997
  • The characteristics of $Na^+$-dependent cycloleucine uptake was investigated in OK cells with regard to substrate specificity and regulation by protein kinase C (PKC). Inhibition studies with different synthetic and natural amino acids showed a broad spectrum affinity to neutral amino acids regardless of their different side chains including branched or aromatic, indicating that the $Na^+$-dependent cycloleucine uptake in OK cells is mediated by System $B^o$ or System $B^o$-like transporter rather than the classical System A or ASC. Phorbol 12-myristate 13-acetate (PMA) and phorbol 12,13-dibutyrate, but not $4{\alpha}-PMA$ elicited a time-dependent biphasic stimulation of $Na^+$-dependent cycloleucine uptake, which produced early transient peak at 30 min and late sustained peak at 180min. Both the early and late stimulations by PMA were due to an increase in Vmax and not due to a change in Km. PKC inhibitors blocked both the early and late stimulation by PMA, while protein synthesis inhibitors blocked the late stimulation only. These results suggest the existence and regulation by PKC of System $B^o$ or System $B^o$-like broad spectrum transport system for neutral amino acids in OK cells.

  • PDF

Evaluation of Extraosseous Abnormalities Detected in Bone Scan ($^{99m}Tc-Methylene$ Diphosphonate (MDP)골(骨)스캔에서 골격외(骨格外) 섭취(攝取) 및 신요로계(腎尿路系) 이상소견(異常所見)에 관(關)한 연구(硏究))

  • Rhim, Sang-Moo;Park, Ran-Jae;Kim, Byung-Tae;Lee, Myung-Chul;Cho, Bo-Yeon;Lee, Hong-Kyu;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 1982
  • The purpose of the present study is to evaluate the clinical and diagnostic significance of incidental findings of renal and urinary tract abnormalities, and extraosseous uptake of bone scans. The authors analyzed bone scans using $^{99m}Tc-MDP$(methylene diphosphonate) in 1238 cases of bone disease from April, 1979 to March, 1981. The results obtained were as follows. 1. Total extraosseous abnormalities were 112 cases (9%), which include 64 cases (5%) of renal and urinary tract abnormalities and 48 case(4%) of other extraosseous uptakes. 2. Renal and urinary tract abnormalities were 32 cases(50%) of obstruction, 14 cases(22%) of nonvisualization, 6 cases of space occupying lesion in kidney, 8 cases of kidney displacement and 4 cases of urinary bladder deformities. 3. Other extraosseous uptakes were 16 cases (33%) of body fluid collection, 15 cases of tumor uptake, 9 cases of free pertechnetate uptake and 8 others.

  • PDF