• Title/Summary/Keyword: keyword extraction

Search Result 192, Processing Time 0.029 seconds

Interactive Morphological Analysis to Improve Accuracy of Keyword Extraction Based on Cohesion Scoring

  • Yu, Yang Woo;Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.145-153
    • /
    • 2020
  • Recently, keyword extraction from social big data has been widely used for the purpose of extracting opinions or complaints from the user's perspective. Regarding this, our previous work suggested a method to improve accuracy of keyword extraction based on the notion of cohesion scoring, but its accuracy can be degraded when the number of input reviews is relatively small. This paper presents a method to resolve this issue by applying simplified morphological analysis as a postprocessing step to extracted keywords generated from the algorithm discussed in the previous work. The proposed method enables to add analysis rules necessary to process input data incrementally whenever new data arrives, which leads to reduction of a dictionary size and improvement of analysis efficiency. In addition, an interactive rule adder is provided to minimize efforts to add new rules. To verify performance of the proposed method, experiments were conducted based on real social reviews collected from online, where the results showed that error ratio was reduced from 10% to 1% by applying our method and it took 450 milliseconds to process 5,000 reviews, which means that keyword extraction can be performed in a timely manner in the proposed method.

Keyword Weight based Paragraph Extraction Algorithm (키워드 가중치 기반 문단 추출 알고리즘)

  • Lee, Jongwon;Joo, Sangwoong;Lee, Hyunju;Jung, Hoekyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.504-505
    • /
    • 2017
  • Existing morpheme analyzers classify the words used in writing documents. A system for extracting sentences and paragraphs based on a morpheme analyzer is being developed. However, there are very few systems that compress documents and extract important paragraphs. The algorithm proposed in this paper calculates the weights of the keyword written in the document and extracts the paragraphs containing the keyword. Users can reduce the time to understand the document by reading the paragraphs containing the keyword without reading the entire document. In addition, since the number of extracted paragraphs differs according to the number of keyword used in the search, the user can search various patterns compared to the existing system.

  • PDF

Keyword Selection for Visual Search based on Wikipedia (비주얼 검색을 위한 위키피디아 기반의 질의어 추출)

  • Kim, Jongwoo;Cho, Soosun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.960-968
    • /
    • 2018
  • The mobile visual search service uses a query image to acquire linkage information through pre-constructed DB search. From the standpoint of this purpose, it would be more useful if you could perform a search on a web-based keyword search system instead of a pre-built DB search. In this paper, we propose a representative query extraction algorithm to be used as a keyword on a web-based search system. To do this, we use image classification labels generated by the CNN (Convolutional Neural Network) algorithm based on Deep Learning, which has a remarkable performance in image recognition. In the query extraction algorithm, dictionary meaningful words are extracted using Wikipedia, and hierarchical categories are constructed using WordNet. The performance of the proposed algorithm is evaluated by measuring the system response time.

An Effective Keyword Extraction Method Based on Web Page Structure Analysis for Video Retrieval in WWW (웹 페이지 구조 분석을 통한 효과적인 동영상 검색용 키워드 추출 방법)

  • Lee, Jong-Won;Choi, Gi-Seok;Jang, Ju-Yeon;Nang, Jong-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.3
    • /
    • pp.103-110
    • /
    • 2008
  • This paper proposes an effective keyword extraction method for the Web videos. The proposed method classifies the Web video pages in one of 4 types. As such, we analyzed the structure of the Web pages based on the number of videos and the layout of the Web pages. And then we applied the keyword extraction algorithm fit to each page type. The experiment with 1,087 Web pages that have total 2,462 videos showed that the recall of the proposed extraction method is 18% higher than ImagerRover[2]. So, the proposed method could be used to build a powerful video search system for WWW.

Human Evaluation of Keyword Extraction System Using Lexical Chains (어휘 체인을 이용한 키워드 추출 시스템 성능 평가)

  • 강보영;이상조
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.190-192
    • /
    • 2001
  • In Information Retrieval or Digital Library, one of the most important factors is to find out the exact information which users need. Exact keywords which represent the content of a document can be much help to find the exact information. In this paper, we evaluate an efficient keyword extraction system by recall and precision. The results presented here are based on the human evaluations of the quality and the appropriateness of keywords.

  • PDF

Keyword Analysis Based Document Compression System

  • Cao, Kerang;Lee, Jongwon;Jung, Hoekyung
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.1
    • /
    • pp.48-51
    • /
    • 2018
  • The traditional documents analysis was centered on words based system was implemented using a morpheme analyzer. These traditional systems can classify used words in the document but, cannot help to user's document understanding or analysis. In this problem solved, System needs extract for most valuable paragraphs what can help to user understanding documents. In this paper, we propose system extracts paragraphs of normalized XML document. User insert to system what filename when wants for analyze XML document. Then, system is search for keyword of the document. And system shows results searched keyword. When user choice and inserts keyword for user wants then, extracting for paragraph including keyword. After extracting paragraph, system operating maintenance paragraph sequence and check duplication. If exist duplication then, system deletes paragraph of duplication. And system informs result to user what counting each keyword frequency and weight to user, sorted paragraphs.

Efficient Keyword Extraction from Social Big Data Based on Cohesion Scoring

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.10
    • /
    • pp.87-94
    • /
    • 2020
  • Social reviews such as SNS feeds and blog articles have been widely used to extract keywords reflecting opinions and complaints from users' perspective, and often include proper nouns or new words reflecting recent trends. In general, these words are not included in a dictionary, so conventional morphological analyzers may not detect and extract those words from the reviews properly. In addition, due to their high processing time, it is inadequate to provide analysis results in a timely manner. This paper presents a method for efficient keyword extraction from social reviews based on the notion of cohesion scoring. Cohesion scores can be calculated based on word frequencies, so keyword extraction can be performed without a dictionary when using it. On the other hand, their accuracy can be degraded when input data with poor spacing is given. Regarding this, an algorithm is presented which improves the existing cohesion scoring mechanism using the structure of a word tree. Our experiment results show that it took only 0.008 seconds to extract keywords from 1,000 reviews in the proposed method while resulting in 15.5% error ratio which is better than the existing morphological analyzers.

Keyword Extraction from News Corpus using Modified TF-IDF (TF-IDF의 변형을 이용한 전자뉴스에서의 키워드 추출 기법)

  • Lee, Sung-Jick;Kim, Han-Joon
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.4
    • /
    • pp.59-73
    • /
    • 2009
  • Keyword extraction is an important and essential technique for text mining applications such as information retrieval, text categorization, summarization and topic detection. A set of keywords extracted from a large-scale electronic document data are used for significant features for text mining algorithms and they contribute to improve the performance of document browsing, topic detection, and automated text classification. This paper presents a keyword extraction technique that can be used to detect topics for each news domain from a large document collection of internet news portal sites. Basically, we have used six variants of traditional TF-IDF weighting model. On top of the TF-IDF model, we propose a word filtering technique called 'cross-domain comparison filtering'. To prove effectiveness of our method, we have analyzed usefulness of keywords extracted from Korean news articles and have presented changes of the keywords over time of each news domain.

  • PDF

A Method for Compound Noun Extraction to Improve Accuracy of Keyword Analysis of Social Big Data

  • Kim, Hyeon Gyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.8
    • /
    • pp.55-63
    • /
    • 2021
  • Since social big data often includes new words or proper nouns, statistical morphological analysis methods have been widely used to process them properly which are based on the frequency of occurrence of each word. However, these methods do not properly recognize compound nouns, and thus have a problem in that the accuracy of keyword extraction is lowered. This paper presents a method to extract compound nouns in keyword analysis of social big data. The proposed method creates a candidate group of compound nouns by combining the words obtained through the morphological analysis step, and extracts compound nouns by examining their frequency of appearance in a given review. Two algorithms have been proposed according to the method of constructing the candidate group, and the performance of each algorithm is expressed and compared with formulas. The comparison result is verified through experiments on real data collected online, where the results also show that the proposed method is suitable for real-time processing.

An Efficient Web Search Method Based on a Style-based Keyword Extraction and a Keyword Mining Profile (스타일 기반 키워드 추출 및 키워드 마이닝 프로파일 기반 웹 검색 방법)

  • Joo, Kil-Hong;Lee, Jun-Hwl;Lee, Won-Suk
    • The KIPS Transactions:PartD
    • /
    • v.11D no.5
    • /
    • pp.1049-1062
    • /
    • 2004
  • With the popularization of a World Wide Web (WWW), the quantity of web information has been increased. Therefore, an efficient searching system is needed to offer the exact result of diverse Information to user. Due to this reason, it is important to extract and analysis of user requirements in the distributed information environment. The conventional searching method used the only keyword for the web searching. However, the searching method proposed in this paper adds the context information of keyword for the effective searching. In addition, this searching method extracts keywords by the new keyword extraction method proposed in this paper and it executes the web searching based on a keyword mining profile generated by the extracted keywords. Unlike the conventional searching method which searched for information by a representative word, this searching method proposed in this paper is much more efficient and exact. This is because this searching method proposed in this paper is searched by the example based query included content information as well as a representative word. Moreover, this searching method makes a domain keyword list in order to perform search quietly. The domain keyword is a representative word of a special domain. The performance of the proposed algorithm is analyzed by a series of experiments to identify its various characteristic.