• Title/Summary/Keyword: keyword affinity

Search Result 2, Processing Time 0.019 seconds

Folder Recommendation Based on User Knowledge (사용자 지식을 반영한 메일 폴더 추천 방법론)

  • You Mee;Park Joo Seok;Kim Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.3
    • /
    • pp.133-146
    • /
    • 2004
  • By the development of the network technology, the types and amount of information that users keep in contact with have been dramatically increased. As a result, users are consuming a lot of time and energy to find needed information. On this, this article presents a new methodology that can efficiently manage their information within small cost by using content-based recommendation method and keyword affinity method. By using keyword affinity method, this methodology solves the content-based recommendation method's weak point that the performance is not good within the environment that the preferences of users are rapidly changing and new contents are created continuously and the accuracy level is low until the information of preferences are sufficiently gathered. This article carried out research on the personal e-mail environment where new information is frequently created and disappeared. Also this article assists folder recommendation for the efficient management of e-mail and verified the methodology mentioned above by an experiment to compare the performance of existing folder recommendation methods with the performance of this new method.

  • PDF

A Knowledge-based Folder Recommendation Procedure for e-mail Classification (사용자의 지식을 반영한 메일 폴더추천에 관한 방법론)

  • 류미;김재경
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2004.11a
    • /
    • pp.349-357
    • /
    • 2004
  • 최근 메일이 커뮤니케이션의 중요한 수단 중 하나로 자리잡고 있으나 과다한 정보 전달 및 원하는 않는 정보의 전달 등으로 인해 사용자가 메일을 확인하고 정리하기 위해 많은 시간과 노력을 투자하고 있다. 본 연구에서는 사용자가 적은 시간과 노력으로 메일을 활용하고, 보다 편리하게 사용할 수 있는 폴더 추천 방법론 개발을 목표로 하고 있다. 이러한 목표를 위해 TF-IDF를 기반으로 하는 다양한 방법론이 개발되고 활용되어 왔으나, 메일이라는 영역의 특성상 단어의 수나 내용에 한계가 있는 경우 안정적인 추천이 이루어지지 못할 수 있었다. 따라서 본 연구에서는 기존의 TF-IDF 방법에 사용자의 지식을 부여한 새로운 방법을 제시함으로써 단어의 수나 내용에 한계가 있는 경우에도 안정적인 추천이 이루어질 수 있도록 하였다. 또한 실제 데이터를 활용하여 기존의 방법과 본 연구에서 제시한 방법론을 비교 실험해 봄으로써, 본 연구에서 제시하고 있는 방법론의 성능을 입증하고자 하였다.

  • PDF