• Title/Summary/Keyword: key-agreement

Search Result 649, Processing Time 0.021 seconds

Key Exchange Protocols for Domestic Broadband Satellite Access Network (광대역 위성 엑세스 방을 위한 키 교환 프로토콜 제안)

  • 오흥룡;염흥열
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.14 no.3
    • /
    • pp.13-25
    • /
    • 2004
  • The key exchange protocols are very crucial tools to provide the secure communication in the broadband satellite access network. They should be required to satisfy various requirements such as security, key confirmation, and key freshness. In this paper, we present the guideline of security functions in BSAN(Broadband Satellite Access Network), and analyze the specification of the security primitives and the hey exchange Protocols for the authenticated key agreement between RCST(Return Channel Satellite Terminal) and NCC(fretwork Control Centre). In addition, we propose the security specification for a domestic broad satellite network based on the analysis on the analysis profile of ETSI(European Telecommunications Standards Institute) standards. The key exchange protocols proposed in ETSI standard are vulnerable to man-in-the-middle attack and they don't provide key confirmation. To overcome this shortcoming, we propose the 4 types of the key exchange protocols which have the resistant to man-in-the-middle-attack, key freshness, and key confirmation, These proposed protocols can be used as a key exchange protocol between RCST and NCC in domestic BSAN. These proposed protocols are based on DH key exchange protocol, MTI(Matsumoto, Takashima, Imai) key exchange protocol, and ECDH(Elliptic Curve Diffie-Hellman).

Thermal Analysis of High Density Permanent Magnet Synchronous Motor Based on Multi Physical Domain Coupling Simulation

  • Chen, ShiJun;Zhang, Qi;He, Biao;Huang, SuRong;Hui, Dou-Dou
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.91-99
    • /
    • 2017
  • In order to meet the thermal performance analysis accuracy requirements of high density permanent magnet synchronous motor (PMSM), a method of multi physical domain coupling thermal analysis based on control circuit, electromagnetic and thermal is presented. The circuit, electromagnetic, fluid, temperature and other physical domain are integrated and the temperature rise calculation method that considers the harmonic loss on the frequency conversion control as well as the loss non-uniformly distributed and directly mapped to the temperature field is closer to the actual situation. The key is to obtain the motor parameters, the realization of the vector control circuit and the accurate calculation and mapping of the loss. Taking a 48 slots 8 poles high density PMSM as an example, the temperature rise distribution of the key components is simulated, and the experimental platform is built. The temperature of the key components of the prototype machine is tested, which is in agreement with the simulation results. The validity and accuracy of the multi physical domain coupling thermal analysis method are verified.

Analytical study of the failure mode and pullout capacity of suction anchors in sand

  • Liu, Haixiao;Peng, Jinsong;Zhao, Yanbing
    • Ocean Systems Engineering
    • /
    • v.5 no.4
    • /
    • pp.279-299
    • /
    • 2015
  • Suction anchors are widely adopted and play an important role in mooring systems. However, how to reliably predict the failure mode and ultimate pullout capacity of the anchor in sand, especially by an easy-to-use theoretical method, is still a great challenge. Existing methods for predicting the inclined pullout capacity of suction anchors in sand are mainly based on experiments or finite element analysis. In the present work, based on a rational mechanical model for suction anchors and the failure mechanism of the anchor in the seabed, an analytical model is developed which can predict the failure mode and ultimate pullout capacity of suction anchors in sand under inclined loading. Detailed parametric analysis is performed to explore the effects of different parameters on the failure mode and ultimate pullout capacity of the anchor. To examine the present model, the results from experiments and finite element analysis are employed to compare with the theoretical predictions, and a general agreement is obtained. An analytical method that can evaluate the optimal position of the attachment point is also proposed in the present study. The present work demonstrates that the failure mode and pullout capacity of suction anchors in sand can be easily and reasonably predicted by the theoretical model, which might be a useful supplement to the experimental and numerical methods in analyzing the behavior of suction anchors.

An analytical analysis of a single axially-loaded pile using a nonlinear softening model

  • Wu, Yue-dong;Liu, Jian;Chen, Rui
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.769-781
    • /
    • 2015
  • The skin friction of a pile foundation is important and essential for its design and analysis. More attention has been given to the softening behaviour of skin friction of a pile. In this study, to investigate the load-transfer mechanism in such a case, an analytical solution using a nonlinear softening model was derived. Subsequently, a load test on the pile was performed to verify the newly developed analytical solution. The comparison between the analytical solution and test results showed a good agreement in terms of the axial force of the pile and the stress-strain relationship of the pile-soil interface. The softening behaviour of the skin friction can be simulated well when the pile is subjected to large loads; however, such behaviour is generally ignored by most existing analytical solutions. Finally, the effects of the initial shear modulus and the ratio of the residual skin friction to peak skin friction on the load-settlement curve of a pile were investigated by a parametric analysis.

Evaluation of soil-concrete interface shear strength based on LS-SVM

  • Zhang, Chunshun;Ji, Jian;Gui, Yilin;Kodikara, Jayantha;Yang, Sheng-Qi;He, Lei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.361-372
    • /
    • 2016
  • The soil-concrete interface shear strength, although has been extensively studied, is still difficult to predict as a result of the dependence on many factors such as normal stresses, surface roughness, particle sizes, moisture contents, dilation angles of soils, etc. In this study, a well-known rigorous statistical learning approach, namely the least squares support vector machine (LS-SVM) realized in a ubiquitous spreadsheet platform is firstly used in estimating the soil-structure interface shear strength. Instead of studying the complicated mechanism, LS-SVM enables to explore the possible link between the fundamental factors and the interface shear strengths, via a sophisticated statistic approach. As a preliminary investigation, the authors study the expansive soils that are found extensively in most countries. To reduce the complexity, three major influential factors, e.g., initial moisture contents, initial dry densities and normal stresses of soils are taken into account in developing the LS-SVM models for the soil-concrete interface shear strengths. The predicted results by LS-SVM show reasonably good agreement with experimental data from direct shear tests.

Numerical simulations of interactions between solitary waves and elastic seawalls on rubble mound breakwaters

  • Lou, Yun-Feng;Luo, Chuan;Jin, Xian-Long
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.393-410
    • /
    • 2015
  • Two dimensional numerical models and physical models have been developed to study the highly nonlinear interactions between waves and breakwaters, but several of these models consider the effects of the structural dynamic responses and the shape of the breakwater axis on the wave pressures. In this study, a multi-material Arbitrary Lagrangian Eulerian (ALE) method is developed to simulate the nonlinear interactions between nonlinear waves and elastic seawalls on a coastal rubble mound breakwater, and is validated experimentally. In the experiment, a solitary wave is generated and used with a physical breakwater model. The wave impact is validated computationally using a breakwater - flume coupling model that replicates the physical model. The computational results, including those for the wave pressure and the water-on-deck, are in good agreement with the experimental results. A local breakwater model is used to discuss the effects of the structural dynamic response and different design parameters of the breakwater on wave loads, together with pressure distribution up the seawall. A large-scale breakwater model is used to numerically study the large-scale wave impact problem and the horizontal distribution of the wave pressures on the seawalls.

A SECURITY ARCHITECTURE FOR THE INTERNET OF THINGS

  • Behrens, Reinhard;Ahmed, Ali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6092-6115
    • /
    • 2017
  • This paper demonstrates a case for an end-to-end pure Application Security Layer for reliable and confidential communications within an Internet of Things (IoT) constrained environment. To provide a secure key exchange and to setup a secure data connection, Transport Layer Security (TLS) is used, which provides native protection against replay attacks. TLS along with digital signature can be used to achieve non-repudiation within app-to-app communications. This paper studies the use of TLS over the JavaScript Object Notation (JSON) via a The Constrained Application Protocol (CoAP) RESTful service to verify the hypothesis that in this way one can provide end-to-end communication flexibility and potentially retain identity information for repudiation. As a proof of concept, a prototype has been developed to simulate an IoT software client with the capability of hosting a CoAP RESTful service. The prototype studies data requests via a network client establishing a TLS over JSON session using a hosted CoAP RESTful service. To prove reputability and integrity of TLS JSON messages, JSON messages was intercepted and verified against simulated MITM attacks. The experimental results confirm that TLS over JSON works as hypothesised.

Modeling of ion diffusion coefficient in saturated concrete

  • Zuo, Xiao-Bao;Sun, Wei;Yu, Cheng;Wan, Xu-Rong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.421-435
    • /
    • 2010
  • This paper utilizes the modified Davis model and the mode coupling theory, as parts of the electrolyte solution theory, to investigate the diffusivity of the ion in concrete. Firstly, a computational model of the ion diffusion coefficient, which is associated with ion species, pore solution concentration, concrete mix parameters including water-cement ratio and cement volume fraction, and microstructure parameters such as the porosity and tortuosity, is proposed in the saturated concrete. Secondly, the experiments, on which the chloride diffusion coefficient is measured by the rapid chloride penetration test, have been carried out to investigate the validity of the proposed model. The results indicate that the chloride diffusion coefficient obtained by the proposed model is in agreement with the experimental result. Finally, numerical simulation has been completed to investigate the effects of the porosity, tortuosity, water-cement ratio, cement volume fraction and ion concentration in the pore solution on the ion diffusion coefficients. The results show that the ion diffusion coefficient in concrete increases with the porosity, water-cement ratio and cement volume fraction, while we see a decrease with the increasing of tortuosity. Meanwhile, the ion concentration produces more obvious effects on the diffusivity itself, but has almost no effects on the other ions.

Structural health monitoring using piezoceramic transducers as strain gauges and acoustic emission sensors simultaneously

  • Huo, Linsheng;Li, Xu;Chen, Dongdong;Li, Hongnan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.595-603
    • /
    • 2017
  • Piezoceramic transducers have been widely used in the health monitoring of civil structures. However, in most cases, they are used as sensors either to measure strain or receive stress waves. This paper proposes a method of using piezoelectric transducers as strain gauges and acoustic emission (AE) sensors simultaneously. The signals received by piezoceramic transducers are decomposed into different frequency components for various analysis purposes. The low-frequency signals are used to measure strain, whereas the high-frequency signals are used as acoustic emission signal associated with local damage. The b-value theory is used to process the AE signal in piezoceramic transducers. The proposed method was applied in the bending failure experiments of two reinforced concrete beams to verify its feasibility. The results showed that the extracted low-frequency signals from the piezoceramic transducers had good agreement with that from the strain gauge, and the processed high-frequency signal from piezoceramic transducers as AE could indicate the local damage to concrete. The experimental results verified the feasibly of structural health monitoring using piezoceramic transducers as strain gauges and AE sensors simultaneously, which can advance their application in civil engineering.

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.