• Title/Summary/Keyword: kernel multimodal component analysis

Search Result 2, Processing Time 0.014 seconds

Speaker Identification Using an Ensemble of Feature Enhancement Methods (특징 강화 방법의 앙상블을 이용한 화자 식별)

  • Yang, IL-Ho;Kim, Min-Seok;So, Byung-Min;Kim, Myung-Jae;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.3 no.2
    • /
    • pp.71-78
    • /
    • 2011
  • In this paper, we propose an approach which constructs classifier ensembles of various channel compensation and feature enhancement methods. CMN and CMVN are used as channel compensation methods. PCA, kernel PCA, greedy kernel PCA, and kernel multimodal discriminant analysis are used as feature enhancement methods. The proposed ensemble system is constructed with the combination of 15 classifiers which include three channel compensation methods (including 'without compensation') and five feature enhancement methods (including 'without enhancement'). Experimental results show that the proposed ensemble system gives highest average speaker identification rate in various environments (channels, noises, and sessions).

  • PDF

Improvement in Supervector Linear Kernel SVM for Speaker Identification Using Feature Enhancement and Training Length Adjustment (특징 강화 기법과 학습 데이터 길이 조절에 의한 Supervector Linear Kernel SVM 화자식별 개선)

  • So, Byung-Min;Kim, Kyung-Wha;Kim, Min-Seok;Yang, Il-Ho;Kim, Myung-Jae;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.6
    • /
    • pp.330-336
    • /
    • 2011
  • In this paper, we propose a new method to improve the performance of supervector linear kernel SVM (Support Vector Machine) for speaker identification. This method is based on splitting one training datum into several pieces of utterances. We use four different databases for evaluating performance and use PCA (Principal Component Analysis), GKPCA (Greedy Kernel PCA) and KMDA (Kernel Multimodal Discriminant Analysis) for feature enhancement. As a result, the proposed method shows improved performance for speaker identification using supervector linear kernel SVM.