• Title/Summary/Keyword: kaolinite

Search Result 515, Processing Time 0.033 seconds

Study on the Geochemical Weathering Process of Sandstones and Mudstones in Pohang Basin at CO2 Storage Condition (지중저장 조건에서 초임계CO2에 의한 포항분지 사암과 이암의 지화학적 풍화반응 연구)

  • Park, Jinyoung;Lee, Minhee;Wang, Sookyun
    • Economic and Environmental Geology
    • /
    • v.46 no.3
    • /
    • pp.221-234
    • /
    • 2013
  • Laboratory experiments for the reaction with supercritical $CO_2$ under the $CO_2$ sequestration condition were performed to investigate the mineralogical and geochemical weathering process of the sandstones and mudstones in the Pohang basin. To simulate the supercritical $CO_2$-rock-groundwater reaction, rock samples used in the experiment were pulverized and the high pressurized cell (200 ml of capacity) was filled with 100 ml of groundwater and 30 g of powdered rock samples. The void space of the high pressurized cell was saturated with the supercritical $CO_2$ and maintained at 100 bar and $50^{\circ}C$ for 60 days. The changes of mineralogical and geochemical properties of rocks were measured by using XRD (X-Ray Diffractometer) and BET (Brunauer-Emmett-Teller). Concentrations of dissolved cations in groundwater were also measured for 60 days of the supercritical $CO_2$-rock-groundwater reaction. Results of XRD analyses indicated that the proportion of plagioclase and K-feldspar in the sandstone decreased and the proportion of illite, pyrite and smectite increased during the reaction. In the case of mudstone, the proportion of illite and kaolinite and cabonate-fluorapatite increased during the reaction. Concentration of $Ca^{2+}$ and $Na^+$ dissolved in groundwater increased during the reaction, suggesting that calcite and feldspars of the sandstone and mudstone would be significantly dissolved when it contacts with supercritical $CO_2$ and groundwater at $CO_2$ sequestration sites in Pohang basin. The average specific surface area of sandstone and mudstone using BET analysis increased from $27.3m^2/g$ and $19.6m^2/g$ to $28.6m^2/g$ and $26.6m^2/g$, respectively, and the average size of micro scale void spaces for the sandstone and mudstone decreased over 60 days reaction, resulting in the increase of micro pore spaces of rocks by the dissolution. Results suggested that the injection of supercritical $CO_2$ in Pohang basin would affect the physical property change of rocks and also $CO_2$ storage capacity in Pohang basin.

Mineralogical Study on the Clay Formation and Heavy Metal Speciation in the Acidified Soil Profile of the Onsan Industrial Area (온산공업지역 산성 토양 프로화일 내에서의 점토광물의 생성과 중금속 이온의 거동에 관한 광물학적 연구)

  • 이상수;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • The present study is focused on the granite weathering and soil formation, and the heavy metal contamination in soils in the Onsan industrial area. For profile study, soil sampling was conducted on each depth and experimental analyses have been conducted on those samples. X-ray diffraction analyses show that clay minerals consist mainly of kaolin minerals, vermiculite, and minor illite. Most of kaolin minerals in the lower kiwi of the profile consist of halloysite as confirmed by formamide intercalation, but the content of halloysite decreases gradually toward the surface since it has been transformed to kaolinite in the upper part of the profile. Thermal treatment by heating at $110^{\circ}C,\;300^{\circ}C,\;and\;550^{\circ}C$ shows a diffuse and broad peak the between 10 and $14\;{\AA}$ region in X-ray diffractograms. This suggests the possible existence of the hydroxy-Al interlayerecl vermiculite. Na-citrate extraction method reaconfirms this result showing transition of $14\;{\AA}$ peak to $10\;{\AA}$ In by removing the interlayer materials and restoring the vermiculite to its original state. The occurrence of hydroxy-Al interlayered vermiculite is also supported by soil pH distribution room 3.9 In the lower part to 3.6 in the upper part of the profile. Sequential extraction experiment was conducted to investigate the states of heavy metals in soils. The experiment shows that relatively high amounts of heavy metals are concentrated in the upper part of the profile and that most of them are bound to Fe/Mn oxides and organic matters while less concentration in clay minerals. The result indicates that most of heavy metal pollutants are concentrated in the surface soil and that the low concentrations of heavy metals in clays are mainly due to the low adsorption capacities of clay minerals such as kaolin minerals and hydroxy-Al interlayered vermiculite in acidified soil condition.

Mineralogy and Genesis of Hydrothermal Deposits in the Southeastern Part of Korean Peninsula : (5) Deogbong Napseok Deposit (우리나라 동남부 지역의 열수광상에 대한 광물학적 및 광상학적 연구:(5) 덕봉납석광상)

  • Kim, Soo-Jin;Choo, Chang-Oh;Kim, Won-Sa
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.25-39
    • /
    • 1994
  • The Deogbong napseok clay deposit which is composed mainly of dickite and pyrophyllite has been formed by hydrothermal alteration of the Late Cretaceous volcanic rocks consisting of andesitic tuff and andesite. The mineralogy of the napseok ores and the hydrothermal alteration processes have been studied in order to know the nature of the interaction between minerals and fluids for the formation of the deposit. Chemical distribution shows that alkali elements and silica were mobile but alumina was relatively immobile during the hydrothermal processes. It is evident that enrichment of alumina and leaching of silica from the host rock led to the formation of the napseok ore, whereas the enrichment of silica in the outer zone of the deposit gave rise to the silica zone. A large amount of microcrystalline quartz closely associated with dickite and pyrophyllite suggests the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica. Thus Si which was released away from the argillic zone by the increasing activity of silica solubility moved out precipitating in the margin of the deposit to form the silica zone. Variation in dickite crystallinity implies the local change in the stability of the system. Thermodynamic calculation shows that the invariant point of pyrophyllite-dickite (kaolinite)-diaspore-quartz assemblages at 500 bars in the system $Al_{2}O_{3}-SiO_{2}-H_{2}O$ is about 300 $^{\circ}C$. Based on the mineral assemblages and the experimental data reported, it is estimated that the main episode of hydrothermal alteration occurred at least above 270 to 300 $^{\circ}C$ and $X_{CO_2}$ <0.025. Mineral occurrence and chemical variation indicate that the activity of Al is high in the upper part of the deposit, whereas the activity of Si is high in the lower part and the margin of the deposit. The nonequilibrium phase relations observed in the Deogbong deposit might be due to local change in intensive thermodynamic variables and fluid transport properties that resulted in the formation of nonequilibrium phases b of several stages.

  • PDF

Changes of Clay Mineral Assemblages in the Northern Part of the Aleutian Basin in the Bering Sea during the Last Glacial Period (마지막 빙하기 동안 베링해 알류샨 분지 북부 지역의 점토광물 조성 변화)

  • Kim, Sung-Han;Cho, Hyen-Goo;Khim, Boo-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • Clay mineral assemblages of core PC25A collected from the northern part of the Aleutian Basin in the Bering Sea were examined in order to investigate changes in sediment provenances and transport pathways. Ages of core PC25A were determined by both Last Appearance Datum of radiolaria (L. nipponica sakaii; $48.6{\pm}2\; ka$) and age control points obtained by the correlations of $a^{\ast},\; b^{\ast}$, and laminated sediment layers with the adjacent core PC23A, whose ages are well constrained. The corebottom age of core PC25A was calculated to be about 57,600 yr ago and core-top might be missing during coring execution. Average contents of smectite, illite, kaolinite, and chlorite during the last glacial period are 11% (5~24%), 47% (36~58%), 13% (9~19%), and 29% (21~40%), respectively. Clay mineral assemblages of the last glacial period are characterized by higher illite and lower smectite contents than those of core MC24 representing the modern values. Illite-rich clay sediments during the warm Early Holocene were transported from the northern part of Alaska continent (Province 1) through the ice-melt waters. During the deglacial period (B${\phi}$lling-All${\phi}$rod) of MIS 2, clay-sized particles seemed to be also transported by ice-melt waters mainly from Province 2 and Province 3 located farther south than Province 1. Higher smectite content during the Last Glacial Maximum is attributed to increased amounts of clay particles from the adjacent Alaska Peninsula (Province 4). From the early to the middle MIS 3, illite and smectite contents decreased, whereas chlorite content increased. With the low sea level standing during MIS 3 the supply of clay sediments from Province 2 and Province 3 was most likely intensified. Changes in clay mineral assemblages of core PC25A located in the northern part of the Aleutian Basin in the Bering Sea are closely related to the change of surface current system caused by sea level variation during the last glacial period.

Hydrothermal Alteration around the Tofua Arc (TA) 25 Seamounts in Tonga Arc (통가열도 TA 25 해저산의 열수변질)

  • Cho, Hyen Goo;Kim, Dong-Ho;Koo, Hyo Jin;Um, In Kwon;Choi, Hunsoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.169-181
    • /
    • 2014
  • Korea government has consistently investigated the development of economic mineral deposits in the Tofua volcanic arc, Tonga since 2008 for the secure of sea floor mineral resources. We studied the composition and distribution of minerals formed by hydrothermal activity around TA 25 seamounts of the Tofua volcanic arc, Lau Basin, Tonga, using X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence spectrometry, and inductively coupled plasma atomic emission spectrometry. We used 7 core samples and 9 surface sediment samples. Barite, sphalerite, and clinoclase are present in the most volcanic vent area. Gypsum, smectite, and kaolin mineral are distributed in vent A area, chalcopyrite, pyrite, smectite, and kaolin mineral are in vent B and C area, and gypsum, chalcopyrite, pyrite, and goethite are in vent D area. From the study of clay fraction, smectite and few kaolinite are detected in the most studied area except inner part of caldera, which suggest that argillic alteration are dominant in the volcanic vent areas. Various sulfide or arsenide minerals were found in the hydrothermal vent B, C, and D. The mineralogy and geochemistry suggest higher hydrothermal activities in volcanic vent B, C, and D compared to vent A and inner caldera area. Therefore higher probabilities of massive sulfide deposits may occur in hydrothermal vent B, C, and D.

Changes in Provenance and Transport Process of Fine Sediments in Central South Sea Mud (남해중앙니질대 세립질 퇴적물의 기원지 및 이동과정 변화)

  • Lee, Hong Geum;Park, Won Young;Koo, Hyo Jin;Choi, Jae Yeong;Jang, Jeong Kyu;Cho, Hyen Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.235-247
    • /
    • 2019
  • The Central South Sea Mud (CSSM), developed in the Seomjin River estuary, is known to be supplied with sediments from Heuksan Mud Belt (HMB) and Seomjin River. However, in order to form a mud belt, more sediments must be supplied than supplied in the above areas. Therefore, research on additional sources should be conducted. In this study, clay minerals, major elements analyzes were performed on cores 16PCT-GC01 and 16PCT-GC03 in order to investigate the transition in the provenance and transport pathway of sediments in CSSM. The Huanghe sediments are characterized by higher smectite and the Changjiang sediments are characterized by higher illite. Korean river sediments contain more kaolinite and chlorite than those of chinese rivers. Korean river sediments have higher Al, Fe, K concentraion than Chinese river sediments and Chinese rivers have higher Ca, Mg, Na than those of Korean rivers. Therefore, clay minerals and major elements can be a useful indicator for provenance. Based on our results, CSSM can be divided into three sediment units. Unit 3, which corresponds to the lowstand stage, is interpreted that sediments from Huanghe were supplied to the study area by coastal or tidal currents. Unit 2, which corresponds to the transgressive stage, is interpreted to have a weaker Huanghe effect and a stronger Changjiang and Korean rivers effect. Unit 1, which corresponds to the highstand stage when the sea level is the same as present and current circulation system is formed, is interpreted that sediments from Changjiang and Korean rivers are supplied to the research area through the current.

Petrological Study on the Spherulitic Rhyolite in the Jangsan Area, Busan (부산 장산 지역의 구과상(球課狀) 유문암에 대한 암석학적 연구)

  • Park, Sumi;Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.219-233
    • /
    • 2013
  • Spherulitic rhyolite occur as part of ring dyke which showing a vertical flowage of $60^{\circ}{\sim}90^{\circ}$, of the Jangsan cauldron was studied. The spherulites range in diameter from a few millimeters to 2.8 centimeters or more, and average 5~10 millimeters. It belongs to radiated simple spherulite type. They consist of a core of moderate brown dense material encased by a thin crust, a few millimeters thick at most of white grey material. The spherulites frequently have a radiating fibrous structure, which are thought to have formed as a consequence of rapid mineral growth caused by very fast cooling of the dykes in shallow depth near the surface. EPMA examination of the concentric-zoned core of spherulites show that they are mainly composed of cryptocrystalline-fibrous intergrowth of silica minerals and alkali feldspars which have $SiO_2$ 82% or more, $Al_2O_3$ 7~10%, $Na_2O+K_2O$ less than 8%. The feldspar compositions of the spherulites lie essentially within the sanidine field. XRD examination show that spherulites are mainly composed of quartz, sanidine, albite with minor mica, kaolinite and chlorite. According to X-ray mapping, the spherulites are enriched in $SiO_2$ in the core and partly enriched $Na_2O$ or $K_2O$, $Al_2O_3$ in the shell that reflect in compositional zoning with increasing spherulitic devitrification. The feathery and non-equant crystal shapes of spherulites from rhyolite dyke of Jangsan cauldron suggest that they may have formed during the rapid cooling of dyke under the static state, or faster velocity of devitrification from glassy materials than movement velocity of the magma intrusion. The spherulitic rhyolite originated from high-silica(75.4~75.7 wt.%) rhyolite magma.

Hydrogeochemical Characteristics of Groundwater in Kwangiu City (광주광역시 지하수의 수리지화학적 특성 연구)

  • 이인호;조병욱;이병대;성익환;임용수
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.115-132
    • /
    • 2002
  • To distinguish the anthropogenic inputs from the chemical weathering with water-rock interaction on the chemical compositons of groundwater in Kwangju city, four different water groups were established based on the landuse type, lithology and topology. The sample from greenbelt area belongs to Group Ⅰ, whereas those from green buffer zone, urban area and industrial area belong to Group II, Group Ⅲ and Group Ⅳ, respectively. The geology of this city mainly consists of biotite granite and granitic gneiss. The concentration of main cations is subject to the behavior of feldspars, micas and carbonate minerals. Cl$\^$-/ and NO$_3$$\^$-/ are supplied by anthropogenic inputs such as domestic sewage whose concentration of these anions is highest in the Group Ⅲ samples. With the Piper diagram, the groundwaters of Group Ⅲ are mainly plotted in CaSO$_4$-CaCl$_2$ type, whereas those of other groups are plotted in Ca(HCO$_3$)$_2$ type, The calculation for the activities of ions and saturation indices of some minerals shows that most of the minerals are undersaturated and plotted in the area of equlibrium with kaolinite. Three factors were extracted from the factor analysis for chemical data. Factor 1 controlled by HCO$_3$$\^$-/, Ca$\^$2-/, SO$_4$$\^$2-/, Mg$\^$2+/ and Na$\^$+/, explains the dissolution of carbonate minerals. mica and plagioclase. Factor 2, controlled by Cl$\^$-/ and NO$_3$$\^$-/, explains the influence of artificial pollution. Factor 3, controlled by Mn, Fe and Zn is subject to the industrial waste water, but the evidence is not clear. Factor 1 is dominant in the Group I and II, indicating that those samples are subjected to natural chemical weathering, The higher scores of factor 2 in the Group Ⅲ samples indicate the potential artificial pollution.

Production and evaluation of raw materials for porcelain using clay mineral (점토 광물을 이용한 도자기용 소지 제조 및 물성 평가)

  • Kim, Jong-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.317-328
    • /
    • 2019
  • In this work, we investigated clay and raw materials from China (black clay, red clay, white clay) and Korea (Cheonan clay, Obu clay) used for the manufacture of porcelain products. According to chemical analysis results, feldspar components containing CaO, K2O, Na2O and quartz are found in clay materials besides primary clay such as kaollinte, for the clay materials from Korea, which is found more in clay materials from Korea than from China. For the Fe2O3 content, governing whiteness of porcelain products, more iron oxide (> 5 %) is found in Korean clays (Cheonan clay, obu clay, red clay) compared to those form China (black, white clay). Through X-ray diffraction analysis, kaolinite and Halloysite are found to be main phases for all the raw materials and second phases such as quartz and pyrophyllite are found. Using these clay materials, raw materials for porcelain products were produced, and the physicochemical properties were investigated for sintered samples. Absorption rate is in order of Baekja-A < Baekja-B < Yeonbuncheong < Jinbuncheong < Cheongja, and the sample, sintered at 1250℃ in reductive atmosphere, exhibits the lowest absorption rate. Comparing the color of the sintered samples, the samples sintered in oxidative atmosphere (L* value: 86~95 %) show higher whiteness value than those sintered in reductive atmosphere (L* value: 81~93 %). For the Cheongja and Buncheong, the samples sintered in reductive atmosphre shows higher whiteness, L* values, and low a*/b* value, which is due to reduction of iron oxide (Fe2O3).

Dynamic Characteristics of Liquidity Filling Materials Mixed with Reclaimed Ash (매립석탄회를 혼합한 유동성 충진재의 동적거동특성)

  • Chae, Deokho;Kim, Kyoungo;Shin, Hyunyoung;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.5-11
    • /
    • 2014
  • Recently, there have been various lifeline installations constructed in the underground space of urban area due to the effective use of land. For newly installed lifelines or the management of the installed lifelines, many construction activities of excavation and backfilling are observed. Around these area, there are possibilities of collapse or excessive settlement due to the leaking of the pipe or unsatisfactory compaction of backfill material. Besides, construction costs can be saved since the on-site soils are used. The application of this liquidity filling material is not only to the lifeline installation but also to underpin the foundation under the vibrating machinery. On the evaluation of the applicability of this method to this circumstance, the strength should be investigated against the static load from the machine load as well as the vibration load from the activation of the machine. In this study, the applicability of the liquidity fill material on the foundation under the vibrating machinery is assessed via uniaxial compression and resonant column tests. The liquidity filling material consisting of the on-site soils with loess and kaolinite are tested to investigate the static and dynamic characteristics. Furthermore, the applicability of the reclaimed ash categorized as an industrial waste is evaluated for the recycle of the waste to the construction materials. The experimental results show that the shear modulus and 7 day uniaxial strength of the liquidity filling material mixed with reclaimed ash show higher than those with the on-site soils. However, the damping ratio does not show any tendency on the mixed materials.