• Title/Summary/Keyword: kaolin material

Search Result 77, Processing Time 0.022 seconds

Flexural Behavior of Hwangtoh Concrete Beams with Recycled PET Fiber (재생 PET섬유가 혼입된 황토 콘크리트 보의 휨 거동)

  • Kim, Sung-Bae;Nam, Jin-Won;Yi, Na-Hyun;Kim, Jang-Jay-Ho;Choi, Hong-Shik
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.619-626
    • /
    • 2008
  • There have been numerous studies to develop eco-friendly concrete. The attempt to reduce the amount of cement usage is suggested as one of the solutions for eco-friendly concrete. To reduce the amount of cement usage, the pozzolan-reaction materials such as ground granulated blast furnace slag, fly ash, and meta kaolin are widely used as the mineral admixture. Hwangtoh which deposited broadly in Korea is a well known eco-friendly material and the activated Hwangtoh with pozzolan-reaction can be practically used as a mineral admixture of concrete. Meanwhile, PET fiber made of recycled PET bottle is a type of recycled material, which can be used to control micro cracks in concrete. But the study about concrete mixed with recycled PET fiber is insufficient and the research of Hwangtoh concrete mixed with PET fiber is urgently needed presently. In this study, experiment and analysis flexural behavior of Hwangtoh concrete blended with recycled PET fiber are carried out. The results are discussed in detail.

Fixed Dose Regimen of Heparin Administration with Activated Coagulation Time During Cardiopulmonary Bypass (심폐바이패스시 활성응고시간을 이용한 헤파린 고정용량법)

  • 김원곤;박성식
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.867-872
    • /
    • 1998
  • Background: The fixed dose regimen with activated coagulation time(ACT) is the most commonly employed method for determining the required dosage of heparin and protamine during cardiopulmonary bypass(CPB). Material and Method: We performed a prospective study on a fixed dose regimen for analyzing adequate dosages of heparin and protamine, the incidence of heparin resistance and heparin-induced thrombocyt openia, factors affecting ACT during CPB, and changes of ACT during aprotinin usage. 300 units/kg of heparin were administered to patients, and ACTs were measured after 5 mins. ACTs were checked at 10 mins and 30 mins after the onset of CPB, and then at 30 min intervals thereafter. If the measured ACT was under 400 secs, we added 100 units/kg of heparin. The heparin was reversed with 1 mg of protamine for each 100 units administered. If the measured ACT was longer than 130 secs 30 mins after protamine administration or if there was definitive evidence of a coagulation defect, we administered a further 0.5 mg/kg of protamine. Result: We studied 80 patients(50 adults and 30 children) who underwent open heart surgery(OHS) at Seoul National University Hospital. Preoperative ACT was 114.3${\pm}$19.3 secs in adults, and 119.5${\pm}$18.2 secs in children. There were no differences in preoperative ACT due to age, body weight, body surface area, or sex. The preoperative ACT was not influenced by a positive past history of OHS. Ten adults(20%) and 3 pediatric patients(10%) needed additional doses of heparin to maintain the ACT above 400 secs. Additional protamine administration was needed in 9 adults(18%) and 10 children(33%). Heparin resistance was found in only two adults. Heparin-induced thrombocytopenia was detected in 2 adults and 1 child. During CPB, ACT was prolonged. 12 adult patients received a low dose of aprotinin and showed longer celite activated ACT compared to the control group.The kaolin activated ACT showed a lower tendency than the celite activated ACT in aprotinin users. Conclusion: In conclusion, fixed dose regimen of heparin and protamine can be used without significant problems, but the incidence of need of additional dosage remains unsatisfactory.

  • PDF

Selection of Binder and Solid Materials for Pelleting Welsh Onion(Allium fistulosum L.) Seeds (파 펠렛종자 생산을 위한 접착제 및 피복재료 선발)

  • 강점순
    • Journal of Life Science
    • /
    • v.12 no.6
    • /
    • pp.721-730
    • /
    • 2002
  • This study was carried out to select new pelleting binder and material for Welsh onion seeds. The optimum treatments of the various plant growth regulators to improve seed germination of the Welsh onion was also estimated. There were no significant effects of growth regulators on the germination percentage, but germination was faster according to the number of days to 50% of the final germination ($T_{50}$) and the mean number of days to germination (MDG) than those of the control. Germinability was increased when the seeds were soaked in gibberellic acid ($GA_3$) solution for 24hrs, even though there was no synergy effect on the germinability when $GA_3$ was mixed with 6-benzylaminopurine (BAP). The optimum treatment for improving germination of Welsh onion was observed when the tested seeds was soaked in 500 $\mu$M of $GA_3$ at $20^{\circ}C$ for 24hrs. Also, when the seeds soaked in the aforementioned treatment, the rate of germination was increased at lower temperature than at $20^{\circ}C$, the optimal temperature. The percentage and the speed of seed germination depended on the kinds of pelleting binder and their concentration. It showed that the higher the concentration of the binder for seeds pelleting, the lower the percentage of seed germination. Among the pelleting binder, polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) were the best binders for seed pelleting, because seed germination using those binder did not affect on the concentration of binder. On the other hand, Carboxymethy cellulose (CMC) and methyl cellulose (MC) severely inhibited the seed germination The germinability was also different arcording to the pelleting materials. Among the different 58 pelleting materials, kaoline alone, the mixture of bentonite and kaoline, the mixture of bentonite, calcium carbonate and diatomaceous earth #300 were found as the best pelleting materials for welsh onion seeds.

Hybrid Water Treatment of Carbon Ultrafiltration Membrane and Polypropylene Beads Coated with Photocatalyst: Effect of Organic Materials, Photo-oxidation, and Adsorption in Water Back-flushing (탄소 한외여과막 및 광촉매 코팅 폴리프로필렌 구의 혼성 수처리: 물 역세척 시 유기물 및 광산화, 흡착의 영향)

  • Park, Jin Yong;Jung, Chung Ho
    • Membrane Journal
    • /
    • v.22 no.5
    • /
    • pp.359-368
    • /
    • 2012
  • For hybrid water treatment of high turbidity water, we used the hybrid module that was composed of photocatalyst packing between tubular membrane outside and module inside. Photocatalyst was PP (polypropylene) bead coated with $TiO_2$ powder by CVD (chemical vapor deposition) process. Water back-flushing of 10 sec was performed per every period of 10 min to minimize membrane fouling for modified solution was prepared with humic acid and kaolin. Resistance of membrane fouling ($R_f$) decreased as humic acid concentration changed from 10 mg/L to 2 mg/L, and finally the highest total permeate volume ($V_T$) could be obtained at 2 mg/L, which was the same with the previous results. Then, treatment efficiencies of turbidity and humic acid were above 98.9% and 88.7%, respectively. As results of treatment portions of UF, UF + $TiO_2$, and UF + $TiO_2$ + UV processes, turbidity was treated little by photocatalyst adsorption, and photo-oxidation. However, treatment portions of humic acid by adsorption and photo-oxidation were 2.5% and 12.3%, respectively. Compared with the previous results, treatment portions of humic acid by adsorption and photo-oxidation were different depending on membrane material and pore size. As simplified the process, the membrane fouling resistance after 180 minutes' operation ($R_{f,180}$) increased and the final permeate flux decreased a little.

Investigation on Natural Radioactivity of Environmental Samples Near the Bauxite Processing Facility (보오크사이트 사용업체 주변 환경시료의 자연방사능 조사)

  • Moon, Dong-Hyeok;Koh, Sang-Mo;Chang, Byung-Uck;Kim, Tong-Kwon;Kim, Yong-Ug
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.347-356
    • /
    • 2010
  • Bauxite is a main raw material for the production of alumina and aluminum hydroxide in the processing plant of KC company. It is a NORM (Naturally Occurring Radioactive Materials), and its waste, red mud, is a TENORM (Technologically Enhanced Naturally Occurring Radioactive Materials). The purpose of the geochemical and mineralogical investigations of the bedrock and soils in and around the plant, a large NORM source, was to provide basic data for measuring the radiation dose and protecting from radioactive hazards. Soils were mixtures of minerals derived from the country rock (quartz, feldspar, mica, kaolin, gibbsite, and sepiolite) and bauxite (hematite, boehmite, and calcite) of open-air storage. Average U and Th contents of the soil samples were 4.7 ppm and 23 ppm, respectively, indicating somewhat Th anomaly. The average concentrations of radionuclides are $^{40}K$ 100~1,433 Bq/kg, $^{226}Ra$ anomaly in the red mud open-air storage. Soil external hazard indices range from 0.10 to 1.66 with an average of 0.63. Although most of the indices are below 1.0 that is a regulation value, those of 4 samples of total 41 soil samples exceed 1.0, requiring further detailed investigation.

Interpretation of Construction Procedure and Physicochemical Characteristics for Soil Layers from Sowangneung (Small Royal Tomb) of Ssangneung (Twin Tombs) in Iksan, Korea (익산 쌍릉 소왕릉 봉분 토층의 물리화학적 특성과 조영과정 해석)

  • Chae, Joon;Park, Seok Tae;Cho, Ji Hyun;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.748-766
    • /
    • 2021
  • The Iksan Ssangneung (twin tombs), a pair of tombs comprising the Daewangneung (large royal tomb) and the Sowangneung (small royal tomb), were constructed in the typical style of stone tunnel and chamber tombs in the Baekje Kingdom during the Sabi period (538 to 660 AD) of ancient Korea. Soil layers exposed during excavation of Sowangneung in a trench east of the tomb are: the bottommost layer, the ground level layer, the Panchuk (rammed earth) layer of the Baekje, the layer created by a grave robbery, and soil recovered during the Japanese colonial period. Soil samples were obtained by segmenting an easy stratigraphic horizon into sub categorized soil layers, and their material properties were analyzed; they are composed mainly of sandy loam based on the particle size distributions. In the site foundation, loamy sand is packed in the bottommost layer, and sandy loam with high sand and silty sand fills most of the overlying layer. The central and topmost portion of the Baekje layer is composed of loam with high clay content. All soil layers show geochemical behaviors similar to those of the bottommost layer. X-ray diffraction analysis verified kaolinite in all layers, also observed in soil layers displaying high crystallinity. Kaolinite and halloysite were identified by scanning electron microscopy. Thus, we conclude that the Baekje layer of the Sowangneung is composed of sandy loam containing kaolin procured from near the site. An impermeable middle to upper layer was created using viscous loam. The top of the tomb was closed tightly.

Transformation of Asbestos-Containing Slate Using Exothermic Reaction Catalysts and Heat Treatment (발열반응 촉매제와 열처리를 이용한 석면함유 슬레이트의 무해화 연구)

  • Yoon, Sungjun;Jeong, Hyeonyi;Park, Byungno;Kim, Yongun;Kim, Hyesu;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.627-635
    • /
    • 2019
  • Cement-asbestos slate is the main asbestos containing material. It is a product made by combining 10~20% of asbestos and cement components. Man- and weathering-induced degradation of the cement-asbestos slates makes them a source of dispersion of asbestos fibres and represents a priority cause of concern. When the asbestos enters the human body, it causes cellular damage or deformation, and is not discharged well in vitro, and has been proven to cause diseases such as lung cancer, asbestos, malignant mesothelioma and pleural thickening. The International Agency for Research on Cancer (IARC) has designated asbestos as a group 1 carcinogen. Currently, most of these slats are disposed in a designated landfill, but the landfill capacity is approaching its limit, and there is a potential risk of exposure to the external environment even if it is land-filled. Therefore, this study aimed to exam the possibility of detoxification of asbestos-containing slate by using exothermic reaction and heat treatment. Cement-asbestos slate from the asbestos removal site was used for this experiment. Exothermic catalysts such as calcium chloride(CaCl2), magnesium chloride(MgCl2), sodium hydroxide(NaOH), sodium silicate(Na2SiO3), kaolin[Al2Si2O5(OH)4)], and talc[Mg3Si4O10(OH)2] were used. Six catalysts were applied to the cement-asbestos slate, respectively and then analyzed using TG-DTA. Based on the TG-DTA results, the heat treatment temperature for cement-asbestos slate transformation was determined at 750℃. XRD, SEM-EDS and TEM-EDS analyses were performed on the samples after the six catalysts applied to the slate and heat-treated at 750℃ for 2 hours. It was confirmed that chrysotile[Mg3Si2O5(OH5)] in the cement-asbestos slate was transformed into forsterite (Mg2SiO4) by catalysts and heat treatment. In addition, the change in the shape of minerals was observed by applying a physical force to the slate and the heat treated slate after coating catalysts. As a result, the chrysotile in the cement-asbestos slate maintained fibrous form, but the cement-asbestos slate after heat treatment of applying catalyst was broken into non-fibrous form. Therefore, this study shows the possibility to safely verify the complete transformation of asbestos minerals in this catalyst- and temperature-induced process.