• Title/Summary/Keyword: kanamycin-resistant gene

Search Result 75, Processing Time 0.018 seconds

Kanamycin Acetyltransferase Gene from Kanamycin-producing Streptomyces kanamyceticus IFO 13414

  • Joe, Young-Ae;Goo, Yang-Mo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.470-474
    • /
    • 1998
  • A kanamycin producer, Streptomyces kanamyceticus IFO 13414 is highly resistant to kanamycin. Cloning of the kanamycin resistance genes in S. lividans 1326 with pIJ702 gave several kanamycin resistant transformants. Two transformants, S. lividans SNUS 90041 and S. lividan. SNUS 91051 showed similar resistance patterns to various aminoglycoside antibiotics. Gene mapping experiments revealed that plasmids pSJ5030 and pSJ2131 isolated from the transformants have common resistant gene fragments. Subcloning of pSJ5030 gave a 1.8 Kb gene fragment which showed resistance to kanamycin. Cell free extracts of S. lividans SNUS 90041, S. lividans SNUS 91051 and subclone a S. lividans SNUS 91064 showed kanamycin acetyltransferase activity. The detailed gene map is included.

  • PDF

Factors Affecting Introduction of rolC Gene in Lycium chinense Mill. (구기자나무(Lycium chinense Mill.)로의 rolC유전자 도입에 미치는 요인)

  • 박용구;최명석;김병원;정원일;노광수
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.6
    • /
    • pp.329-334
    • /
    • 1995
  • Transformation system of rolC gene, dwarf gene in Lycium chinenese Mill. established by using system. Pin-punctured leaves induced numerous adventious buds in abaxial side when cultured on 3/2 MS medium containing 2.0 mg/L zeatin. Survival rate and shoot regeneration frequency of leaf explants decreased as kanamycin sulfate level increased. Shoot buds were not regenerated on 3/2 MS medium containing 10 mg/L kanamycin sulfate and 2.0 mg/L zeaein. Of the level tested, 10 mg/L of kanamycin sulfate was optimum in selection of kanamycin sulfate resistant plant. Co-culture time of bacteria and leaf explants was affected at the frequency of shoot regeneration and survival of leaf explants. Leaf explants co-cultivated during above 48hr severely decreased survival rate and shooting rate. Best result on survival rate and shooting rate were obtained when exposed for 24 h. 80 explants of 105 leaf explants survived on 3/2 MS medium containing 2.0 mg/L zeatin and 10 mg/L kanamycin sulfate, and 15 shoots was regenerated on the same medium. To select kanamycin sulfate resistant plant, regenerate as cultured on 3/2 MS medium containing 10 mg/L kanamycin sulfate, and obtained 5 kanamycin resistant plants. Southern blot analysis conformed that the rolC gene was incorporated into the genomic DNA of kanamycin resistant plants.

  • PDF

Linkage of the Kanamycin Resistance Gene with the Streptothricin Resistance Gene in Staphylococcus aureus SA2

  • Shin, Chul Kyo;Sung Hwan Im;Woo Koo Kim;Kyung Bo Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.219-220
    • /
    • 1996
  • The pKH2 isolated from the multidrug-resistant Staphylococcus aureus SA2 is a 40.98-kb plasmid and mediates resistance to ampicillin, clindamycin, erythromycin, kanamycin, and streptomycin. The 3.4-kb HindIII fragment conferring kanamycin resistance was cloned from the pKH2 into pBluescriptII $KS^+$ and partial sequence determination of that fragment was carried out. Sequence analysis revealed that the kanamycin resistance gene which encoded aminoglycoside 3'-phosphotransferase was linked to the streptothricin resistance gene. But a nonsense mutation was found in the streptothricin resistance gene and this mutation resulted in a truncated protein of streptothricin acetyltransferase. Homology comparison with nucleotide sequence databases revealed that the 3.4-kb HindIII fragment of pKH2 had been derived not from S. aureus but from Gram-negative Campylobacter coli.

  • PDF

Expression of Chinese Cabbage Glutathione Reductase Gene in Lettuce (Lactuca sativa L.) (형질전환 상추에서 배추 Glutathione Reductase 유전자의 발현)

  • 정재동;김창길;조진기
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.4
    • /
    • pp.267-271
    • /
    • 1998
  • Cotyledon explants of lettuce were cocultured with Agrobacterium tumefaciens LBA4404::pBKS-GR1 harboring glutathione reductase(GR) gene in MS medium supplemented with 0.1 mg/L NAA and 1.0 mg/L 2ip for 48 hr. These explants were transferred to MS medium supplemented with 0.1 mg/L NAA and 1.0 mg/L 2ip, 50 mg/L kanamycin, and 500 mg/L carbenicillin. After 4 weeks of subculture, kanamycin-resistant shoots were obtained on selection medium. Leaves of putative transformants survived on selection medium containing 100 mg/L kanamycin. Incoporation of the GR gene into lettuce was confirmed by PCR analysis of genomic DNA. Southern blot analysis showed that ECL-labeled GR gene was hybridized to the expected amplified genomic DNA fragment of about 1.8 kb from transgenic lettuce. The presence of mRNA in transgenic lettuce was confirmed by RT-PCR with total RNA of transgenic lettuce. In progeny test of transformants, R$_1$ seeds were resistant to kanamycin (200mg/L) on MS medium.

  • PDF

The Introduction of Proteinase Inhibitor II (PI-II) Gene into Flowering Cabbage, Brassica oleracea var. acephala DC. (꽃양배추로의 Proteinase Inhibitor II ( PI-II ) 유전자 도입)

  • 김창길;정재동;안진흥
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.1
    • /
    • pp.45-50
    • /
    • 1998
  • Hypocotyl explants of flowering cabbage were precultured on MS medium without kanamycin and then cocultured with Agrobacterium tumefaciens LBA4404;;pGA875 harboring insect resistantce proteinase inhibitor II(PI-II) gene in MS liquid medium adjusted pH 5.5 for 72hr. These explants were transferred to MS medium containing 20 mg/L kanamycin, 500 mg/L carbenicillin, and 1 mg/L BA. The explants were subsequently subcultured every 2 weeks. After 4 weeks of subculture, kanamycin-resistant shoots were obtained from selection medium. Leaves of putative transformants survived on MS selection medium containing 30 mg/L kanamycin. Incoporation of the PI-II gene into flowering cabbage was confirmed by PCR analysis of genomic DNA. Southern blot analysis showed that ECL-labeled probe for PI-II gene was hybridized to the expected amplified genomic DNA fragment of about 500 by from transgenic flowering cabbage.

  • PDF

Investigation of Possible Gene Transfer to Soil Microorganisms for Environmental Risk Assessment of Genetically Modified Organisms

  • Kim, Young-Tae;Park, Byoung-Keun;Hwang, Eui-Il;Yim, Nam-Hui;Kim, Na-Rae;Kang, Tae-Hoon;Lee, Sang-Han;Kim, Sung-Uk
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.498-502
    • /
    • 2004
  • The current study was conducted to monitor the possibility of the gene transfer among soil bacteria, including the effect of drift due to rain and surface water, in relation to the release of genetically modified organisms into the environment. Four types of bacteria, each with a distinct antibiotic marker, kanamycin-resistant P. fluorescens, rifampicin-resistant P. putida, chloramphenicol-resistant B. subtilis, and spectinomycin-resistant B. subtilis, were plated using a small-scale soil-core device designed to track drifting microorganisms. After three weeks of culture in the device, no Pseudomonas colonies resistant to both kanamycin and rifampicin were found. Likewise, no Bacillus colonies resistant to both chloramphenicol and spectinomycin were found. The gene transfer from glyphosate-tolerant soybeans to soil bacteria, including Rhizobium spp. as a symbiotic bacteria, was examined by hybridization using the DNA extracted from soil taken from pots, in which glyphosate-tolerant soybeans had been growing for 6 months. The results showed that 35S, T-nos, and EPSPS were observed in the positive control, but not in the DNA extracted from the soilborne microorganisms. In addition, no transgenes, such as the 35S promoter, T-nos, and EPSPS introduced into the GMO soybeans were detected in soilborne bacteria, Rhizobium leguminosarum, thereby strongly rejecting the possibility of gene transfer from the GMO soybeans to the bacterium.

Genetic Transformation of Sweet Potato by Particle Bombardment (Particle Bombardment에 의한 고구마의 형질전환)

  • 민성란;정원중;이영복;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.329-333
    • /
    • 1998
  • $\beta$-Glucuronidase (GUS) gene of Escherichia coli was introduced into sweet potato (Ipomoea batatas (L.) Lam.) cells by particle bombardment and expressed in the regenerated plants. Microprojectiles coated with DNA of a binary vector pBI121 carrying CaMV35S promoter-GUS gene fusion and a neomycin phosphotransferase gene as selection marker were bombarded on embryogenic calli which originated from shoot apical meristem-derived callus and transferred to Murashige and Skoog (MS) medium supplemented with 1 mg/L 2,4-dichlorophenoxyacetic acid and 100 mg/L kanamycin. Bombarded calli were subcultured at 4 week intervals for six months. Kanamycin-resistant calli transferred to MS medium supplemented with 0.03 mg/L 2iP, 0.03 mg/L ABA, and 50 mg/L kanamycin gave rise to somatic embryos. Upon transfer to MS basal medium without kanamycin, they developed into plantlets. PCR and northern analyses of six regenerants transplanted to potting soil confirmed that the GUS gene was inserted into the genome of the six regenerated plants. A histochemical assay revealed that the GUS gene was preferentially expressed in the vascular bundle and the epidermal layer of leaf, petiole, and tuberous root.

  • PDF

Transformation of Populus Species by an Agrobacterium Binary Vector System (Agrobacterium Binary Vector에 의한 포플러 형질전환(形質轉換)을 위한 기초연구(基礎研究))

  • Chun, Young Woo;Klopfenstein, Ned B.;McNabb, Harold S. Jr.;Hall, Richard B.
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.2
    • /
    • pp.199-207
    • /
    • 1988
  • Three clones of Populus alba ${\times}$ P. grandidentata have been tested for susceptibility to Agrobacterium tumefaciens strains A281 and A348. We determined the optimum concentration of kanamycin sulfate for effective selection of leaf disc-derived, transgenic tissues transformed using Agrobacterium binary vector pGA472 containing a neomycin phosphotransferase gene (NPT-II) which confers kanamycin resistance. Of the wild type Ti plasmids contained by the two Agrobacterium strains, pTiBo542 of strain A281 appears to be best suited to serve as a helper plasmid for binary vector systems. A relatively low concentration (10mg/l) of kanamycin sulfate inhibited adventitious shoot initiation from leaf discs on regeneration medium. Transformed kanamycin-resistant calli were obtained by culturing Agrobacterium inoculated leaf discs on selective regeneration medium. The transformed kanamycin-resistant calli continued to grow on regeneration media supplemented with kanamycin sulfate to levels of 50 and 200mg/l. The growth of non-co-cultivated control calli was severely inhibited on regeneration medium containing 50mg/l kanamycin sulfate.

  • PDF

Development of Transgenic Plant (Codonopsis lanceolata Trautv.) Harboring a Bialaphos Resistance Gene, bar (Bialaphos 저항성 유전자 bar를 이용한 형질전환 더덕개발)

  • 조광수;장정은;류종석;권무식
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.281-287
    • /
    • 1999
  • Codonopsis lanceolata ("Deoduck" in Korea) is a perennial herb, and belongs to family, Campanulaceae. Its taproot is used a good source of a wild vegetable as well as an herbaceous medicine. In this study, to develop a bialaphos-resistant transgenic Codonopsis, seed germination mechanism and somatic embryogenesis of the plant were investigated, and Agrobacterium-mediated transformation with bar gene encoding phosphinothricin acetyltransferase (PAT) was performed. Attempt were made to regenerate plant from cells via somatic embryogenesis. When the cotyledons, nodes and leaf disks were cultured on MS medium containing 2,4-D and zeatin, embryogenic calli were induced. Upon transferring the somatic embryos to N6 solid medium without plant growth regulators, they developed into plantlets under continuous illumination. All plants were dead on MS basal medium containing 10 mg/L phosphinothricin (PPT) and Basta, respectively. The explants did not produce calli in the medium containing 200 mg/L kanamycin. The explants were cocultured with Agrobacterium tumefaciens for 2 days, and transformants were selected in MS basal medium containing 1.0 mg/L 2,4-D, 100 mg/L kanamycin and 500 mg/L carbenicillin. After the selection, embryogenic calli were induced and then somatic embryos were produced by subsequent subculturing. The somatic embryos were germiated on N6 basal medium containing 200 mg/L kanamycin and 500 mg/L carbenicillin. PCR analysis showed that nptII and bar genes were introduced in the Deoduck transformants. After the confirmation of bar gene expression in RNA and protein level, the transgenic Deoduck will be used to study the genetics of filial generation with the herbicide control gene, bar.gene, bar.

  • PDF

Protoplast Isolation and Fusion of Nicotiana glauca and Solanum tuberose Transformed by Selectable Marker Genes (표지유전자로 형질전환된 연초와 감자로부터 원형질제의 유리 및 융합)

  • 양덕춘;박태은;민병훈;최경화;정해준
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.20 no.1
    • /
    • pp.40-49
    • /
    • 1998
  • Protoplasts were isolated from mesophyll of tobacco(Nicotiana glauca) transformed with kanamycin-resistant gene (NPT II gene) and potato hairy root callus containing Ri plasmid of Agrobacterium rhiEogenes, and protoplasm fusion was made between the isolated protoplasts. The transgenic tobacco leaf tissue could grow on the media containing high concentrations of kanamycin, but not on the phytohormone-free media. On the other hand, the potato hairy root calli could be cultured on the phytohormone-free media but not on media containing more than 40 ㎍/ml kanamycin. In these conditions, the viability of both protoplasts were above 90%, These selection markers were used for the selection of protoplasts fused between the two, i.e. protoplast fusion was detected using selection media containing 100㎍/ml kanamycin and with no phytohormone. The mixture of 1.0% cellulase, 0.3% macerozyme, and 0.7M mannitol was best for the maximum protoplast production for tobacco, and that of 2.0% cellulase, 2.0% macerozyme, 1.0% dricelase, and 0.5M mannitol for potato. Both tobacco mesophyll and potato callus protoplasts were fused by using PEG solution on the selectable medium. Cell walls were regenerated after 5 days in this medium, and colonies were alive until 4 weeks after cultural, but died after 6 weeks.

  • PDF