• Title/Summary/Keyword: kanamycin resistance gene

Search Result 78, Processing Time 0.032 seconds

Kanamycin Acetyltransferase Gene from Kanamycin-producing Streptomyces kanamyceticus IFO 13414

  • Joe, Young-Ae;Goo, Yang-Mo
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.470-474
    • /
    • 1998
  • A kanamycin producer, Streptomyces kanamyceticus IFO 13414 is highly resistant to kanamycin. Cloning of the kanamycin resistance genes in S. lividans 1326 with pIJ702 gave several kanamycin resistant transformants. Two transformants, S. lividans SNUS 90041 and S. lividan. SNUS 91051 showed similar resistance patterns to various aminoglycoside antibiotics. Gene mapping experiments revealed that plasmids pSJ5030 and pSJ2131 isolated from the transformants have common resistant gene fragments. Subcloning of pSJ5030 gave a 1.8 Kb gene fragment which showed resistance to kanamycin. Cell free extracts of S. lividans SNUS 90041, S. lividans SNUS 91051 and subclone a S. lividans SNUS 91064 showed kanamycin acetyltransferase activity. The detailed gene map is included.

  • PDF

Linkage of the Kanamycin Resistance Gene with the Streptothricin Resistance Gene in Staphylococcus aureus SA2

  • Shin, Chul Kyo;Sung Hwan Im;Woo Koo Kim;Kyung Bo Moon
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.219-220
    • /
    • 1996
  • The pKH2 isolated from the multidrug-resistant Staphylococcus aureus SA2 is a 40.98-kb plasmid and mediates resistance to ampicillin, clindamycin, erythromycin, kanamycin, and streptomycin. The 3.4-kb HindIII fragment conferring kanamycin resistance was cloned from the pKH2 into pBluescriptII $KS^+$ and partial sequence determination of that fragment was carried out. Sequence analysis revealed that the kanamycin resistance gene which encoded aminoglycoside 3'-phosphotransferase was linked to the streptothricin resistance gene. But a nonsense mutation was found in the streptothricin resistance gene and this mutation resulted in a truncated protein of streptothricin acetyltransferase. Homology comparison with nucleotide sequence databases revealed that the 3.4-kb HindIII fragment of pKH2 had been derived not from S. aureus but from Gram-negative Campylobacter coli.

  • PDF

Genetic Organization of a 50-kb Gene Cluster Isolated from Streptomyces kanamyceticus for Kanamycin Biosynthesis and Characterization of Kanamycin Acetyltransferase

  • ZHAO XIN QING;KIM KYOUNG ROK;SANG LI WEI;KANG SUK HO;YANG YOUNG YELL;SUH JOO WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.346-353
    • /
    • 2005
  • A 50-kb chromosome DNA region was isolated from Streptomyces kanamyceticus by screening the fosmid genomic library, using the 16S rRNA methylase gene (kmr) as a probe. Sequence analysis of this region revealed 42 putative open reading frames (ORFs), which included biosynthetic genes such as genes responsible for 2-deoxystreptamine (2­DOS) biosynthesis as well as genes for resistance and regulatory function. Also, the kanamycin acetyltransferase gene (kac) was characterized by in vitro enzyme assay, which conferred E. coli BL21 (DE3) with 10, 50, and 80-times higher resistance to kanamycin A, tobramycin, and amikacin, respectively, than the control strain had, thus strongly indicating that the isolated gene cluster is very likely involved in kanamycin biosynthesis. This work provides a solid basis for further elucidation of the kanamycin biosynthesis pathway as well as the productivity improvement and construction of new hybrid antibiotics.

Agrobacterium-mediated transformation of Bacillus thuringiensis cry1Ac gene in chrysanthemum (Dendranthema grandiflorum Kitamura) 'Linneker Salmon' (국화(Dendranthema grandiflorum Kitamura) 'Linneker Salmon'에 Agrobacterium을 이용한 Bacillus thuringiensis cry1Ac 유전자의 형질전환)

  • Han, Bong-Hee;Lee, Su-Young;Lim, Jin-Hee
    • Journal of Plant Biotechnology
    • /
    • v.35 no.2
    • /
    • pp.147-153
    • /
    • 2008
  • Cry1Ac gene was introduced into chrysanthemum (Dendranthema grandiflorum Kitamura) 'Linneker Salmon' through Agrobacterium-mediated gene transformation to develop new lines showing resistance to tobacco cutworm (Spodoptera litura). Cry1Ac gene was transferred into chrysanthemum by Agrobacterium C58C1 containing pCAMBIA2301. After infection of Agrobacterium C58C1 with leaf segments, the segments were cultured on regeneration medium (MS + 1.0 mg/L BA + 0.5 mg/L IAA) containing 10 mg/L kanamycin for the first selection, on the same medium containing 20 mg/L kanamycin for the second selection, and on rooting medium (MS basal medium) containing 20 mg/L kanamycin for the third selection. Until the third selection, sixty nine plantlets (1.6%) were survived and rooted. Thirty six ones (0.8%) among them were confirmed as putative transformants with nptll gene by nptll primer PCR, and 35 (0.8%) of 36 ones as transformants with nptll gene and cry1Ac gene by Southern analysis. The gene transformation efficiency of cry1Ac gene was favorable with 0.8%. The resistance of tobacco cutworm (Spodoptera litura) in chrysan-themum transformant introduced cry1Ac gene was tested in green house. Three transformants were confirmed to have resistance to tobacco cutworm.

Pyramiding transgenes for potato tuber moth resistance in potato

  • Meiyalaghan, Sathiyamoorthy;Pringle, Julie M.;Barrell, Philippa J.;Jacobs, Jeanne M.E.;Conner, Anthony J.
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • The feasibility of two strategies for transgene pyramiding using Agrobacterium-mediated transformation was investigated to develop a transgenic potato (Solanum tuberosum L. cv. Iwa) with resistance to potato tuber moth (PTM) (Phthorimaea operculella (Zeller)). In the first approach, cry1Ac9 and cry9Aa2 genes were introduced simultaneously using a kanamycin (nptII) selectable marker gene. The second approach involved the sequential introduction (re-transformation) of a cry1Ac9 gene, using a hygromycin resistance (hpt) selectable marker gene, into an existing line transgenic for a cry9Aa2 gene and a kanamycin resistance (nptII) selectable marker gene. Multiplex polymerase chain reaction (PCR) confirmed the presence of the specific selectable marker gene and both cry genes in all regenerated lines. The relative steady-state level of the cry gene transcripts in leaves was quantified in all regenerated lines by real-time PCR analysis. Re-transformation proved to be a flexible approach to effectively pyramid genes for PTM resistance in potato, since it allowed the second gene to be added to a line that was previously identified as having a high level of resistance. Larval growth of PTM was significantly inhibited on excised greenhouse-grown leaves in all transgenic lines, although no lines expressing both cry genes exhibited any greater resistance to PTM larvae over that previously observed for the individual genes. It is anticipated that these lines will permit more durable resistance by delaying the opportunities for PTM adaptation to the individual cry genes.

Transformation of PAT gene into Lettuce (Lactuca sativa L.) using Agrobacterium tumefaciens (Agrobacterium tumefaciens를 이용한 상추 (Lactuca sativa L.)의 PAT유전자 형질전환)

  • 류정아;김창길;이현숙;최경배;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.197-200
    • /
    • 2001
  • Agrobacterium tumefaciens MP90 harboring PAT (phosphinothricin acetyltransferase) and NPTII-GUS gene were used for the genetic transformation of lettuce (Lactuca Sativa L.). Shoot regeneration from cotyledon explants were obtained from the MS medium supplemented with 0.1 mg.L$^{-1}$ NAA, 1.0 mg.L$^{-1}$ 2ip, 50 mg.L$^{-1}$ kanamycin and 500 mg.L$^{-1}$ carbenicillin after cocultivation with A. tumefaciens for 2 days. Kanamycin resistance test of transgenic plants indicated that the NPTII gene was integrated into the lettuce genome and was stably expressed. PCR and northern blot analysis indicated that bialaphos resistance gene (PAT) was stably integrated into the lettuce genome. The transgenic plant sprayed with Basta (1500x) remained healthy with continuous growth, while the control group exhibited fatality.

  • PDF

Transformation of Carrot (Daucus carota) Cells Using Binary Vector System (Binary Vector System을 이용한 당근 (Daucus carota) 세포의 형질전환)

  • 양덕조;이성택
    • KSBB Journal
    • /
    • v.5 no.3
    • /
    • pp.247-253
    • /
    • 1990
  • These studies were carried out to obtain the transformant from carrot cells by using binary vector pGA472 with NPT II gene to confer kanamycin resistance in the plant cells. The binary vector pGA472 was mobilized from E. coli MC1000 into A. tumefaciens strains isolated in the Korea, C23-1. K29-1, and disarmed Ti-plasmid PC2760, and A28l using a tri-parental mating method with E. coli HB101/pRK2013. Transconjugants, C23-1/pGA472, K29-1/pGA472, PC2 760/pGA472 and A28l/pGA472 were obtaind on the minimum AB media containing tetracycline and kanamycin, were comfirmed to hold the Ti-plasmid and pGA472 binary vector on the 0.7% agarose gel. Transformed carrot calli were initiated on the MS media supplemented with l00$\mu\textrm{g}$/ml kanamycin and 250$\mu\textrm{g}$/ml carbenicillin after co-cultivation of carrot explant and transconjugant Agrobacteria. Selected callus was grown vigouousley for subculture on the medium containing 100$\mu\textrm{g}$/ml kanamycin, thus indication that the selected callus was transformed with NPT II gene.

  • PDF

Comparative Analysis of Resistance to Antibiotics in Populus alba$\times$P. glandulosa Transformed by nptII or hpt Gene (NPTII 및 HPT 유전자가 삽입된 현사시의 항생제에 대한 저항성 분석)

  • 이은정;노은운;박재인
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.5
    • /
    • pp.243-248
    • /
    • 2001
  • This study was peformed to find out the optimal conditions for the selection of transformed cells using already established transgenic plants. Several transgenic poplar (Populus alba$\times$P giandulosa) lines carrying npt II or hpt gene as a selectable marker were tested against kanamycin or hygromycin. Two culture explants, leaf discs and nodes, were compared regarding their sensitivity to the antibiotics. When leaf discs of untransformed control plants were cultured on callus inducing media in the presence of varying levels of kanamycin or hygromycin, only those cultured on the media containing lower than 50 mg/L kanamycin or 2 mg/L hygromycin formed callus. However, much higher concentration of kanamycin was needed to suppress the growth of axillary buds of untransformed plants. On the other hand, hygromycin at the concentration of 5 mg/L effectively suppressed shoot growth of untransformed plants. Root induction from untransformed plants could also be suppressed at the concentration of 50 mg/L kanamycin or 5 mg/L hygromycin. The transgenic plants showed resistance to 100 mg/L kanamycin or 50 mg/L hygromycin in the growth of callus, shoots, and roots. Hygromycin appeared to be more efficient in selecting untransformed cells than kanamycin.

  • PDF

Factors Effecting Agrobacterium Mediated Transformation and Regeneration of Populus nigra × P. maximowiczii (Agrobacterium tumefaciens에 의한 양황철나무의 형질전환(形質轉換) 요인(要因))

  • Park, Young Goo;Shin, Dong Won;Kim, Joung Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.278-284
    • /
    • 1990
  • We have demonstrated expression of bacterial genes transferred into cells of Populus nigra ${\times}$ P. maximowiczii by A. tumefaciens strain 6044 (pGA 472). We determined the optimum concentration of kanamycin sulfate for effective selection of punctured leaf transformed using Agrobacterium binary vector pGA 472 containing a neomycine phosphotransferase gene (NPT-II) which confers kanamycin resistance. The combination of cefotaxime (200mg/l) and carbenicillin (300mg/l) showed good performance of discarding Agrobacterium from inoculated punctured leaf. A relatively low concentration (10mg/l) of kanamycin sulfate inhibited callus and shoots induction from punctured leaf. Number of shoots regenerated from co-cultured punctured leaf was 3.0 on MS basal medium supplemented with 10 mg/l kanamycin sulfate, while that of not co-cultured punctured leaf was none. The regeneration rate was 10% from the punctured leaf co-cultured on MS medium with 10 mg/l kanamycin. Regenerated shoots are developing from micropropagation for Southern blot analysis and inheritance of the kanamycin resistance trait (NPT-II).

  • PDF

Construction of a Corynebacteriurn glutarnicum-Escherichicr coli Shuttle Vector and Cloning the Homoserine ehydrogenase Gene from C. glutamicum (Corynebacterium glutamicum-Escherichia coli Shuttle Vector 개발과 C.glutamicum 의 Homoserine Dehydrogenase Gene Cloning)

  • 최신건;박종현;신현경
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 1991
  • A 7.5 kilobases hybrid plasmid, designated as pCE1301, was constructed by combining Eschurichia cwli plasmid pBELl which carries the kanamycin resistance gene of Tn5 with a cryptic plasmid, pSRl of Corynebacterium glutamicum. pCE1301 was transformed C. glutaicum by PEG-mediated protoplast method and its transformation efficiency was about $3.0\times 10^3$ transformants per $\mu g$ of the hybrid plasmid DNA. The physical map reveals that pCE1301 has single restriction sites for SalI and EcoRl, respectively. 'The kanamycin resistance of pCE1301 was stably maintained in C. glutamicum up to 25 generations and any segregation was not detected. pCI31301 was also introduced into Brevibacterium flavum and E coil, and replicated in those strains. pCE1301 was proved to be useiul in cloning the homoscrine dehydrogenase gene from C. glutamicum.

  • PDF