• 제목/요약/키워드: k-w turbulence equations

검색결과 31건 처리시간 0.019초

K-$\omega$ 난류방정식을 위한 다중격자기법의 수렴성 연구 (Convergence Study of Multigrid Method for K-$\omega$ Turbulence Equations)

  • 박수형;성춘호;권장혁;이승수
    • 한국전산유체공학회지
    • /
    • 제7권4호
    • /
    • pp.19-27
    • /
    • 2002
  • An efficient implicit multigrid method is presented for the Navier-Stokes and k-ω turbulence equations. Freezing and limiting strategies are applied to improve the robustness and convergence of the multigrid method. The eddy viscosity and strongly nonlinear production terms of turbulence are frozen in the coarser grids by passing down the values without update of them. The turbulence equations together with the Navier-Stokes equations, however, are consecutively solved on the coarser grids in a loosely coupled fashion. A simple limit for k is also introduced to circumvent slow-down of convergence. Numerical results for the unseparated and separated transonic airfoil flows show that all computations converge well without any robustness problem and the computing time is reduced to a factor of about 3 by the present multigrid method.

단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용 (Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor)

  • 이준석;김광용
    • 한국유체기계학회 논문집
    • /
    • 제3권3호
    • /
    • pp.7-11
    • /
    • 2000
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit fout-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations we discretized with explcit finite difference method. Mired-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-w turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

관류 익형송풍기의 유동해석에 대한 난류모델 및 수치도식의 영향에 관한 연구 (A Study on the Effects of Turbulence Model and Numerical Scheme on Analysis of the Flow through Airfoil Type Tubular Fan)

  • 문정주;서성진;김광용
    • 한국유체기계학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-29
    • /
    • 2003
  • Three-dimensional flow through a tubular centrifugal fan with airfoil type blades is analyzed, and the effects of turbulence model and numerical scheme on the results are investigated. Standard $k-{\epsilon}$ model and k - w model are tested as turbulence closures. The numerical schemes for convection terms, i.e., Upwind Differencing Scheme (UDS), Mass Weighted Skewed upstream differencing scheme (MWS), Linear Profile Skewed upstream differencing scheme (LPS), and Modified Linear Profile Skewed upstream differencing scheme (MLPS) are also tested, and the performances of these schemes coupled with two turbulence models are evaluated. The static pressure distributions are compared with experimental data obtained in this work, which shows that the $k-{\epsilon}$ model gives better results than the k-w model.

초음속 충돌 제트 운동에 대한 k-$\omega$ 난류모델의 적용 (Numerical Study on k-$\omega$ Turbulence Models for Supersonic Impinging Jet Flow Field)

  • 김유진;박수형;권장혁;김성인;박승오;이광섭;홍승규
    • 한국전산유체공학회지
    • /
    • 제9권2호
    • /
    • pp.30-35
    • /
    • 2004
  • A numerical study of underexpanded jet and impingement on a wall mounted at various distances from the nozzle exit is presented. The 3-dimensional Wavier-Stokes equations and κ-ω turbulence equations are solved. The grids are constructed as overlapped grid systems to examine the distance effect. The DADI method is applied to obtain steady-state solutions. To avoid numerical instability such as the carbuncle phenomena that sometimes accompany approximate Riemann solver, the HLLE+ scheme is employed for the inviscid flux at the cell interfaces. A goal of this work is to apply a number of two-equation turbulence models based on the w equation to the impinging jet problem.

단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용 (Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor)

  • 이준석;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1999년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.27-32
    • /
    • 1999
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

저마하수 난류 끝단 소음 예측 (PREDICTION OF TURBULENCE TRAILING-EDGE NOISE AT LOW MACH NUMBERS)

  • 장강욱;고성룡;서정희;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.249-253
    • /
    • 2005
  • The turbulence noise generated from blunt trailing-edge is numerically predicted by using the hydrodynamic/acoustic splitting method at the Reynolds number based on thickness of flat plate, $Re_h=1000$, and the freestream Mach number $M_o=0.2$. The turbulent flow field is simulated by incompressible large-eddy simulation and the acoustic field is predicted efficiently with the linearized perturbed compressible equations (LPCE) recently proposed by the authors. The turbulent flow characteristics are validated with the results of the previous experimental study and direct numerical simulation. The acoustic properties predicted from LPCE are compared with the solutions of analytical formulations.

  • PDF

차압식 Venturi-cone 유량계에 대한 유동해석 (Numerical Analysis of the Differential Pressure Venturi-cone Flowmeter)

  • 윤준용;맹주성;이정원
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1997년도 추계 학술대회논문집
    • /
    • pp.143-148
    • /
    • 1997
  • Differential pressure Venturi cone flowmeter is an advanced flowmeter which has many advantages such as wide range of measurement, high accuracy, excellent flow turndown ratio, low headless, and short installation pipe length requirement, etc. Like other differential pressure flowmeter, Venturi cone flowmeter uses the law of energy conservation, but its shape and position make it perform better than others. The cone acts as its own flow conditioner and mixer, fully conditioning and mixing the flow prior to measurement. For the analysis, we use Reynolds-averaged Navier-Stokes equations and $k-{\omega}$ turbulence model. The equations are fully trans-formed in the computational coordinates, the pressure-velocity coupling is made through SIMPLER algorithm, and the equations are discretized using analytic solutions of the linearized equations(Finite Analytic Method). At the end of the paper, using the result of analysis, We propose a new shape of cone with the hope of drag reduction and high performance.

  • PDF

2-방정식 난류모델을 이용한 스포일러 천이적 공력특성의 파라메트릭 연구 (Parametric Study of Transient Spoiler Aerodynamics with Two-Equation Turbulence Models)

  • 최성욱;장근식;옥호남
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 추계 학술대회논문집
    • /
    • pp.15-24
    • /
    • 2000
  • The transient response of an airfoil to a rapidly deploying spoiler is numerically investigated using the turbulent compressible Navier-Stokes equations in two dimensions. Algebraic Baldwin-Lomax model, Wilcox $\kappa-\omega$ model, and SST $\kappa-\omega$ turbulence model are used to calculate the unsteady separated flow due to the rapid spoiler deployment. The spoiler motion relative to a stationary airfoil is treated by an overset grid hounded by a Dynamic Domain-Dividing Line which has been devised by the authors. The adverse effects of the spoiler influenced by the spoiler location and the hinge gap are expounded. The numerical results are in reasonably good agreement with the existing experimental data.

  • PDF

Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility

  • Bitsuamlak, Girma T.;Dagnew, Agerneh;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.21-36
    • /
    • 2010
  • A new full scale testing apparatus generically named the Wall of Wind (WoW) has been built by the researchers at the International Hurricane Research Center (IHRC) at Florida International University (FIU). WoW is capable of testing single story building models subjected up to category 3 hurricane wind speeds. Depending on the relative model and WoW wind field sizes, testing may entail blockage issues. In addition, the proximity of the test building to the wind simulator may also affect the aerodynamic data. This study focuses on the Computational Fluid Dynamics (CFD) assessment of the effects on the quality of the aerodynamic data of (i) blockage due to model buildings of various sizes and (ii) wind simulator proximity for various distances between the wind simulator and the test building. The test buildings were assumed to have simple parallelepiped shapes. The computer simulations were performed under both finite WoW wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind flow. Mean pressure coefficients for the roof and the windward and leeward walls served as measures of the blockage and wind simulator proximity effects. The study uses the commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a Renormalization Group (RNG) k-${\varepsilon}$ turbulence model. The results indicated that for larger size test specimens (i.e. for cases where the height of test specimen is larger than one third of the wind field height) blockage correction may become necessary. The test specimen should also be placed at a distance greater than twice the height of the test specimen from the fans to reduce proximity effect.

2차원 및 3차원 저레이놀즈수 유동 해석 비교 연구 (A COMPARATIVE STUDY OF TWO AND THREE DIMENSIONAL LOW REYNOLDS NUMBER FLOW)

  • 이재훈;정경진;이길태;강인모
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.3-7
    • /
    • 2009
  • In this study, two and three dimensional low Reynolds number flows are compared. For the two dimensional flow, an airfoil was considered and for the three dimensional low wing and full-body aircraft were considered. Because a flight condition of the aircraft is in a low Reynolds number flow, itl requires reflecting flow transition. In the two dimensional analysis, transition is predicted using en method. In the three dimensional flow, the effect of transition is included using k-w SST turbulence models.

  • PDF