• Title/Summary/Keyword: k-thinning algorithm

Search Result 52, Processing Time 0.025 seconds

LCD Defect Detection using Neural-network based on BEP (BEP기반의 신경회로망을 이용한 LCD 패널 결함 검출)

  • Ko, Jung-Hwan
    • 전자공학회논문지 IE
    • /
    • v.48 no.2
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper we show the LCD simulator for defect inspection using image processing algorithm and neural network. The defect inspection algorithm of the LCD consists of preprocessing, feature extraction and defect classification. Preprocess removes noise from LCD image, using morphology operator and neural network is used for the defect classification. Sample images with scratch, pinhole, and spot from real LCD color filter image are used. From some experiments results, the proposed algorithms show that defect detected and classified in the ratio of 92.3% and 94.5 respectively. Accordingly, in this paper, a possibility of practical implementation of the LCD defect inspection system is finally suggested.

License Plate Recognition System Using Artificial Neural Networks

  • Turkyilmaz, Ibrahim;Kacan, Kirami
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • A high performance license plate recognition system (LPRS) is proposed in this work. The proposed LPRS is composed of the following three main stages: (i) plate region determination, (ii) character segmentation, and (iii) character recognition. During the plate region determination stage, the image is enhanced by image processing algorithms to increase system performance. The rectangular license plate region is obtained using edge-based image processing methods on the binarized image. With the help of skew correction, the plate region is prepared for the character segmentation stage. Characters are separated from each other using vertical projections on the plate region. Segmented characters are prepared for the character recognition stage by a thinning process. At the character recognition stage, a three-layer feedforward artificial neural network using a backpropagation learning algorithm is constructed and the characters are determined.

Study on the Development of Auto-classification Algorithm for Ginseng Seedling using SVM (Support Vector Machine) (SVM(Support Vector Machine)을 이용한 묘삼 자동등급 판정 알고리즘 개발에 관한 연구)

  • Oh, Hyun-Keun;Lee, Hoon-Soo;Chung, Sun-Ok;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.36 no.1
    • /
    • pp.40-47
    • /
    • 2011
  • Image analysis algorithm for the quality evaluation of ginseng seedling was investigated. The images of ginseng seedling were acquired with a color CCD camera and processed with the image analysis methods, such as binary conversion, labeling, and thinning. The processed images were used to calculate the length and weight of ginseng seedlings. The length and weight of the samples could be predicted with standard errors of 0.343 mm, and 0.0214 g respectively, $R^2$ values of 0.8738 and 0.9835 respectively. For the evaluation of the three quality grades of Gab, Eul, and abnormal ginseng seedlings, features from the processed images were extracted. The features combined with the ratio of the lengths and areas of the ginseng seedlings efficiently differentiate the abnormal shapes from the normal ones of the samples. The grade levels were evaluated with an efficient pattern recognition method of support vector machine analysis. The quality grade of ginseng seedling could be evaluated with an accuracy of 95% and 97% for training and validation, respectively. The result indicates that color image analysis with support vector machine algorithm has good potential to be used for the development of an automatic sorting system for ginseng seedling.

Automated Lineament Extraction and Edge Linking Using Mask Processing and Hough Transform.

  • Choi, Sung-Won;Shin, Jin-Soo;Chi, Kwang-Hoon;So, Chil-Sup
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.411-420
    • /
    • 1999
  • In geology, lineament features have been used to identify geological events, and many of scientists have been developed the algorithm that can be applied with the computer to recognize the lineaments. We choose several edge detection filter, line detection filters and Hough transform to detect an edge, line, and to vectorize the extracted lineament features, respectively. firstly the edge detection filter using a first-order derivative is applied to the original image In this step, rough lineament image is created Secondly, line detection filter is used to refine the previous image for further processing, where the wrong detected lines are, to some extents, excluded by using the variance of the pixel values that is composed of each line Thirdly, the thinning process is carried out to control the thickness of the line. At last, we use the Hough transform to convert the raster image to the vector one. A Landsat image is selected to extract lineament features. The result shows the lineament well regardless of directions. However, the degree of extraction of linear feature depends on the values of parameters and patterns of filters, therefore the development of new filter and the reduction of the number of parameter are required for the further study.

  • PDF

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Feature Extraction of Handwritten Numerals using Projection Runlength (Projection Runlength를 이용한 필기체 숫자의 특징추출)

  • Park, Joong-Jo;Jung, Soon-Won;Park, Young-Hwan;Kim, Kyoung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.818-823
    • /
    • 2008
  • In this paper, we propose a feature extraction method which extracts directional features of handwritten numerals by using the projection runlength. Our directional featrures are obtained from four directional images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral shape respectively. A conventional method which extracts directional features by using Kirsch masks generates edge-shaped double line directional images for four directions, whereas our method uses the projections and their runlengths for four directions to produces single line directional images for four directions. To obtain the directional projections for four directions from a numeral image, some preprocessing steps such as thinning and dilation are required, but the shapes of resultant directional lines are more similar to the numeral lines of input numerals. Four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. By using a hybrid feature which is made by combining our feature with the conventional features of a mesh features, a kirsch directional feature and a concavity feature, higher recognition rates of the handwrittern numerals can be obtained. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the handwritten numeral database of Concordia University, we have achieved a recognition rate of 97.85%.

Digit Recognition for Vehicle License Plate Based on Opened Enclosure (열림방향을 이용한 자동차번호판 숫자인식)

  • Zheng, Liu;Kim, Dong-Wook
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.6
    • /
    • pp.453-459
    • /
    • 2015
  • In this paper, we propose a new digit recognition method based on opened enclosure. In the proposed method, each digit is divided into two parts, an upper part and a lower part, which are based on a cutting line that is modified depending on the number of intersection points. In the simulation, the performance evaluation through the data acquisition and application of the proposed algorithm was carried out and the result was presented.

Shadow Removal based on Chromaticity and Brightness Distortion for Effective Moving Object Tracking (효과적인 이동물체 추적을 위한 색도와 밝기 왜곡 기반의 그림자 제거)

  • Kim, Yeon-Hee;Kim, Jae-Ho;Kim, Yoon-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.4
    • /
    • pp.249-256
    • /
    • 2015
  • Shadow is a common physical phenomenon in natural images and may cause problems in computer vision tasks. Therefore, shadow removal is an essential preprocessing process for effective moving object tracking in video image. In this paper, we proposed the method of shadow removal algorithm using chromaticity, brightness distortion and direction of shadow candidate. The proposed method consists of two steps. First, removal process of primary shadow candidate region by using chromaticity, brightness and distortion. The second stage applies the final shadow candidate region to obtain a direction feature of shadow which is estimated by the thinning algorithm after calculating the lowest pixel position of the moving object. To verify the proposed approach, some experiments are conducted to draw a compare between conventional method and that of proposed. Experimental results showed that proposed methodology is simple, but robust and well adaptive to be need to remove a shadow removal operation.

A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector (명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식)

  • Lee, Eung-Ju;Seok, Yeong-Su
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, we propose the react-time car license plate recognition algorithm using intensity variation and geometric pattern vector. Generally, difference of car license plate region between character and background is more noticeable than other regions. And also, car license plate region usually shows high density values as well as constant intensity variations. Based on these characteristics, we first extract car license plate region using intensity variations. Secondly, lightness compensation process is performed on the considerably dark and brightness input images to acquire constant extraction efficiency. In the proposed recognition step, we first pre-process noise reduction and thinning steps. And also, we use geometric pattern vector to extract features which independent on the size, translation, and rotation of input values. In the experimental results, the proposed method shows better computation times than conventional circular pattern vector and better extraction results regardless of irregular environment lighting conditions as well as noise, size, and location of plate.

Invariant Image Matching using Linear Features (선형특징을 사용한 불변 영상정합 기법)

  • Park, Se-Je;Park, Young-Tae
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.55-62
    • /
    • 1998
  • Matching two images is an essential step for many computer vision applications. A new approach to the scale and rotation invariant scene matching, using linear features, is presented. Scene or model images are described by a set of linear features approximating edge information, which can be obtained by the conventional edge detection, thinning, and piecewise linear approximation. A set of candidate parameters are hypothesized by mapping the angular difference and a new distance measure to the Hough space and by detecting maximally consistent points. These hypotheses are verified by a fast linear feature matching algorithm composed of a single-step relaxation and a Hough technique. The proposed method is shown to be much faster than the conventional one where the relaxation process is repeated until convergence, while providing matching performance robust to the random alteration of the linear features, without a priori information on the geometrical transformation parameters.

  • PDF