• Title/Summary/Keyword: k-space

Search Result 26,729, Processing Time 0.048 seconds

Progress Report on NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Moon, Bongkon;Lee, Dae-Hee;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2014
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is the near-infrared instrument onboard NEXTSat-1 which is being developed by KASI. The imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, star-forming regions and so on will be performed on orbit. After the System Requirement Review, the optical design is changed from on-axis to the off-axis telescope which has a wide field of view (2 deg. ${\times}$ 2 deg.) as well as the wide wavelength range from 0.95 to $3.8{\mu}m$. The mechanical structure is considered to endure the launching condition as well as the space environment. The design of relay optics is optimized to maintain the uniform optical performance in the required wavelength range. The stray light analysis is being made to evade a light outside a field of view. The dewar is designed to operate the infrared detector at 80K stage. From the thermal analysis, we confirmed that the telescope can be cooled down to around 200K in order to reduce the large amount of thermal noise. Here, we report the current status of the NISS development.

  • PDF

IGRINS Spectral Library

  • Park, Sunkyung;Lee, Jeong-Eun;Kang, Wonseok;Lee, Sang-Gak;Chun, Moo-Young;Kim, Kang-Min;Jeong, Ueejeong;Yuk, In-Soo;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.71.2-71.2
    • /
    • 2015
  • We present the high-resolution near-infrared spectra of standard stars observed with Immersion Grating Infrared Spectrograph (IGRINS). IGRINS covers the full spectral range of H and K bands simultaneously with a high spectral resolution (R=40,000), revealing many previously undetected and/or unknown lines. In this work, we present preliminary results of spectroscopic diagnostics for stellar physical parameters. Our ultimate goal is to provide a library of near-infrared spectra of standard stars, which covers all spectral types and luminosity classes, with a high-resolution and high signal to noise ratio ($SNR{\geq}200$).

  • PDF

Giant Magellan Telescope Project in 2014

  • Park, Byeong-Gon;Yuk, In-Soo;Lee, Jae-Joon;Yoon, Yang-Noh;Hwang, Narae;Park, Chan;Kim, Jihun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.100.1-100.1
    • /
    • 2014
  • Korea Astronomy and Space Science Institute (KASI) has been participating in the Giant Magellan Telescope (GMT) project since 2009. In 2014, GMT project has passed its important milestones toward construction of the telescope and observatory facilities. We will report the recent achievements and current status of the project in this contribution.

  • PDF

Development of Autoguiding system for IGRINS

  • Lee, Hye-in;Kang, Wonseok;Pak, Soojong;Kwon, Bong-Yong;Lee, Sungwon;Chun, Moo-Young;Jeong, Ueejeong;Yuk, In-Soo;Kim, Kangmin;Park, Chan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.73.2-73.2
    • /
    • 2013
  • An autoguiding system for astronomical observations should be accurate and stable for efficient data taking. IGRINS (Immersion Grating Infrared Spectrograph) is a high resolution near-IR spectrograph which is now developed by Korea Astronomy and Space Science Institute and the University of Texas. We plan to attach this instrument on the 2.7m telescope at the McDonald observatory in 2013. IGRINS consists on three detector modules, i. e., H and K band spectrograph modules and a K band slit camera module. We use the slit camera for autoguiding of the telescope. In this poster, we describe the system architecture of the hardware and software of the autoguiding system, and the algorithm which would effectively find centers of stellar images on or outside of the slit of the infrared array.

  • PDF

Conceptual Design Study of NISS onboard NEXTSat-1

  • Jeong, Woong-Seob;Park, Sung-Joon;Park, Kwijong;Lee, Dae-Hee;Moon, Bongkon;Pyo, Jeonghyun;Park, Youngsik;Kim, Il-Joong;Park, Won-Kee;Lee, Duk-Hang;Park, Chan;Ko, Kyeongyeon;Nam, Ukwon;Han, Wonyong;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shin, Goo-Hwan;Chae, Jangsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.82.2-82.2
    • /
    • 2013
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 is being developed by KASI. The NISS will perform the imaging low-resolution spectroscopic observation in the near-infrared range for nearby galaxies, low background regions, starforming regions and so on. The off-axis reflecting telescope with a wide field of view (2 deg. ${\times}$ 2 deg.) will be operated in the wavelength range from 0.95 to $3.8{\mu}m$. In order to reduce thermal noise, a telescope and a HgCdTe infrared sensor will be cooled down to 200K and 80K, respectively. To evade a stray light outside a field of view and use limited space efficiently, the NISS adopted the off-axis reflective optical system. The primary and secondary mirrors, optomechanical part and mechanical structure were designed to use the same material. It will lessen the degradation of optical performance due to a thermal variation. The purpose of NISS is the observation of cosmic near-infrared background in the wide wavelength range as well as the detection of near-infrared spectral lines in nearby galaxies, cluster of galaxies and star forming regions. It will give us less biased information on the star formation history. In addition, we will demonstrate the space technologies related to the development of the Korea's leading near-infrared instrument for the future large infrared telescope, SPICA.

  • PDF

MEMS space Telescope for the observation of Extreme Lightening (MTEL)

  • Park, Jae-Hyoung;Garipov, Garik;Jeon, Jin-A;Jin, Joo-Young;Jung, Ae-Ra;Kim, Ji-Eun;Kim, Min-Soo;Kim, Yong-Kweon;Klimov, Pavel;Khrenov, Boris;Lee, Chang-Hwan;Lee, Jik;Na, Go-Woon;Nam, Ji-Woo;Nam, Shin-Woo;Park, Il-Heung;Park, Yong-Sun;Suh, Jung-Eun;Yoo, Byong-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.34 no.1
    • /
    • pp.113.1-113.1
    • /
    • 2009
  • PDF

Analysis of a Simulated Optical GSO Survey Observation for the Effective Maintenance of the Catalogued Satellites and the Orbit Determination Strategy

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Son, Ju-Young;Park, Sun-youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.237-245
    • /
    • 2015
  • A strategy is needed for a regional survey of geosynchronous orbits (GSOs) to monitor known space objects and detect uncataloged space objects. On the basis of the Inter-Agency Debris Committee's recommendation regarding the protected region of geosynchronous Earth orbit (GEO), target satellites with perigee and apogee of $GEO{\pm}200km$ and various inclinations are selected for analysis. The status of the GSO region was analyzed using the satellite distribution based on the orbital characteristics in publicly available two-line element data. Natural perturbation effects cause inactive satellites to drift to two stable longitudinal points. Active satellites usually maintain the designed positions as a result of regular or irregular maneuver operations against their natural drift. To analyze the detection rate of a single optical telescope, 152 out of 412 active satellites and 135 out of 288 inactive satellites in the GSO region were selected on the basis of their visibility at the observation site in Daejeon, Korea. By using various vertical view ranges and various numbers of observations of the GSO region, the detection efficiencies were analyzed for a single night, and the numbers of follow-up observations were determined. The orbital estimation accuracies were also checked using the arc length and number of observed data points to maintain the GSO satellite catalog.

REQUIREMENTS AND FEASIBILITY STUDY OF FPC-G FINE GUIDING IN SPACE INFRARED TELESCOPE, SPICA (대형 적외선 우주망원경 SPICA/FPC-G의 정밀 별추적 요구사항과 타당성 연구)

  • Jeong, Woong-Seob;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Sung-Joon;Ree, Chang Hee;Park, Youngsik;Han, Wonyong;Nam, Ukwon;Matsumoto, Toshio
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.5
    • /
    • pp.391-397
    • /
    • 2012
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. It will achieve the high resolution as well as the unprecedented sensitivity from mid to far-infrared range. The FPC (Focal Plane Camera) proposed by KASI as an international collaboration is a near-infrared instrument. The FPC-S and FPC-G are responsible for the scientific observation in the near-infrared and the fine guiding, respectively. The FPC-G will significantly reduce pointing error down to below 0.075 arcsec through the observation of guiding stars in the focal plane. We analyzed the pointing requirement from the focal plane instruments as well as the error factors affecting the pointing stability. We also obtained the expected performance in operation modes. We concluded that the FPC-G can achieve the pointing stability below 0.075 arcsec which is the requirement from the focal plane instruments.