• 제목/요약/키워드: k-nn classification

검색결과 191건 처리시간 0.014초

사례기반추론의 유사 임계치 및 커버리지 최적화 (Optimizing Similarity Threshold and Coverage of CBR)

  • 안현철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권8호
    • /
    • pp.535-542
    • /
    • 2013
  • 사례기반추론(CBR)은 많은 장점으로 인해 지금까지 의료진단, 생산계획, 고객분류 등 다양한 분야의 의사결정 지원에 적용되어 왔다. 그러나, 효과적인 CBR 시스템을 설계, 구축하기 위해서는 연구자가 직관적으로 설정해야 할 많은 설계요소들이 존재한다. 본 연구에서는 이러한 CBR의 여러 설계요소들 중 사례 검색 단계에서 결합할 이웃 사례들을 보다 효과적으로 선정할 수 있는 새로운 모형을 제시한다. 기존 연구에서는 결합할 이웃 사례를 선정하는 방법으로 사전에 정해진 이웃사례의 수(k-NN의 k)를 적용하든가, 혹은 최대 유사도의 상대적 비율을 임계치로 사용하는 방식을 적용해 왔다. 하지만, 본 연구에서는 결합할 유사사례를 선택하는 새로운 기준으로 0에서 1사이의 값을 갖는 절대적 유사 임계치를 사용할 것을 제안한다. 이 경우, 임계치 값이 과도하게 작아지게 되면, 예측결과의 생성이 잘 이루어지지 않을 수 있는 문제가 발생할 수 있다. 이에, 전체 학습사례들 중에서 예측결과가 생성된 사례의 비중을 커버리지(coverage)로 정의하고, 이를 유사 임계치 최적화 시 제약조건으로 설정함으로서, 사용자가 원하는 수준의 커버리지는 유지한 상태에서 가장 효과적인 유사 사례를 찾아 추론할 수 있도록 모형을 설계하였다. 제안 모형의 유용성을 검증하기 위해, 본 연구에서는 이 모형을 실존하는 국내 한 온라인 쇼핑몰의 표적 마케팅 사례에 적용하였다. 그 결과, 제안 모형이 CBR의 예측 성과를 유의미하게 개선시킬 수 있음을 확인할 수 있었다.