• Title/Summary/Keyword: k-nearest neighbor method

Search Result 316, Processing Time 0.028 seconds

Assessment of Forest Biomass using k-Neighbor Techniques - A Case Study in the Research Forest at Kangwon National University - (k-NN기법을 이용한 산림바이오매스 자원량 평가 - 강원대학교 학술림을 대상으로 -)

  • Seo, Hwanseok;Park, Donghwan;Yim, Jongsu;Lee, Jungsoo
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.4
    • /
    • pp.547-557
    • /
    • 2012
  • This study purposed to estimate the forest biomass using k-Nearest Neighbor (k-NN) algorithm. Multiple data sources were used for the analysis such as forest type map, field survey data and Landsat TM data. The accuracy of forest biomass was evaluated with the forest stratification, horizontal reference area (HRA) and spatial filtering. Forests were divided into 3 types such as conifers, broadleaved, and Korean pine (Pinus koriansis) forests. The applied radii of HRA were 4 km, 5 km and 10 km, respectively. The estimated biomass and mean bias for conifers forest was 222 t/ha and 1.8 t/ha when the value of k=8, the radius of HRA was 4 km, and $5{\times}5$ modal was filtered. The estimated forest biomass of Korean pine was 245 t/ha when the value of k=8, the radius of HRA was 4km. The estimated mean biomass and mean bias for broadleaved forests were 251 t/ha and -1.6 t/ha, respectively, when the value of k=6, the radius of HRA was 10 km. The estimated total forest biomass by k-NN method was 799,000t and 237 t/ha. The estimated mean biomass by ${\kappa}NN$method was about 1t/ha more than that of filed survey data.

Biometrics Based on Multi-View Features of Teeth Using Principal Component Analysis (주성분분석을 이용한 치아의 다면 특징 기반 생체식별)

  • Chang, Chan-Wuk;Kim, Myung-Su;Shin, Young-Suk
    • Korean Journal of Cognitive Science
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2007
  • We present a new biometric identification system based on multi-view features of teeth using principal components analysis(PCA). The multi-view features of teeth consist of the frontal view, the left side view and the right side view. In this paper, we try to stan the foundations of a dental biometrics for secure access in real life environment. We took the pictures of the three views teeth in the experimental environment designed specially and 42 principal components as the features for individual identification were developed. The classification for individual identification based on the nearest neighbor(NN) algorithm is created with the distance between the multi-view teeth and the multi-view teeth rotated. The identification performance after rotating two degree of test data is 95.2% on the left side view teeth and 91.3% on the right side view teeth as the average values.

  • PDF

Person Recognition Using Gait and Face Features on Thermal Images (열 영상에서의 걸음걸이와 얼굴 특징을 이용한 개인 인식)

  • Kim, Sa-Mun;Lee, Dae-Jong;Lee, Ho-Hyun;Chun, Myung-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.2
    • /
    • pp.130-135
    • /
    • 2016
  • Gait recognition has advantage of non-contact type recognition. But It has disadvantage of low recognition rate when the pedestrian silhouette is changed due to bag or coat. In this paper, we proposed new method using combination of gait energy image feature and thermal face image feature. First, we extracted a face image which has optimal focusing value using human body rate and Tenengrad algorithm. Second step, we extracted features from gait energy image and thermal face image using linear discriminant analysis. Third, calculate euclidean distance between train data and test data, and optimize weights using genetic algorithm. Finally, we compute classification using nearest neighbor classification algorithm. So the proposed method shows a better result than the conventional method.

Personal Identification Using Teeth Images

  • Kim Tae-Woo;Cho Tae-Kyung;Park Byoung-Soo;Lee Myung-Wook
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.435-437
    • /
    • 2004
  • This paper presents a personal identification method using teeth images. The method uses images for teeth expressions of anterior and posterior occlusion state and LDA-based technique. Teeth images give merits for recognition because teeth, rigid objects, cannot be deformed at the moment of image acquisition. In the experiments, personal identification for 12 people was successful. It was shown that our method can contribute to multi-modal authentication systems.

  • PDF

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.

A Hangul Document Classification System using Case-based Reasoning (사례기반 추론을 이용한 한글 문서분류 시스템)

  • Lee, Jae-Sik;Lee, Jong-Woon
    • Asia pacific journal of information systems
    • /
    • v.12 no.2
    • /
    • pp.179-195
    • /
    • 2002
  • In this research, we developed an efficient Hangul document classification system for text mining. We mean 'efficient' by maintaining an acceptable classification performance while taking shorter computing time. In our system, given a query document, k documents are first retrieved from the document case base using the k-nearest neighbor technique, which is the main algorithm of case-based reasoning. Then, TFIDF method, which is the traditional vector model in information retrieval technique, is applied to the query document and the k retrieved documents to classify the query document. We call this procedure 'CB_TFIDF' method. The result of our research showed that the classification accuracy of CB_TFIDF was similar to that of traditional TFIDF method. However, the average time for classifying one document decreased remarkably.

Hierarchical Gabor Feature and Bayesian Network for Handwritten Digit Recognition (계층적인 가버 특징들과 베이지안 망을 이용한 필기체 숫자인식)

  • 성재모;방승양
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • For the handwritten digit recognition, this paper Proposes a hierarchical Gator features extraction method and a Bayesian network for them. Proposed Gator features are able to represent hierarchically different level information and Bayesian network is constructed to represent hierarchically structured dependencies among these Gator features. In order to extract such features, we define Gabor filters level by level and choose optimal Gabor filters by using Fisher's Linear Discriminant measure. Hierarchical Gator features are extracted by optimal Gabor filters and represent more localized information in the lower level. Proposed methods were successfully applied to handwritten digit recognition with well-known naive Bayesian classifier, k-nearest neighbor classifier. and backpropagation neural network and showed good performance.

Method for Assessing Landslide Susceptibility Using SMOTE and Classification Algorithms (SMOTE와 분류 기법을 활용한 산사태 위험 지역 결정 방법)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.5-12
    • /
    • 2023
  • Proactive assessment of landslide susceptibility is necessary for minimizing casualties. This study proposes a methodology for classifying the landslide safety factor using a classification algorithm based on machine learning techniques. The high-risk area model is adopted to perform the classification and eight geotechnical parameters are adopted as inputs. Four classification algorithms-namely decision tree, k-nearest neighbor, logistic regression, and random forest-are employed for comparing classification accuracy for the safety factors ranging between 1.2 and 2.0. Notably, a high accuracy is demonstrated in the safety factor range of 1.2~1.7, but a relatively low accuracy is obtained in the range of 1.8~2.0. To overcome this issue, the synthetic minority over-sampling technique (SMOTE) is adopted to generate additional data. The application of SMOTE improves the average accuracy by ~250% in the safety factor range of 1.8~2.0. The results demonstrate that SMOTE algorithm improves the accuracy of classification algorithms when applied to geotechnical data.

Efficient k-Nearest Neighbor Query Processing Method for a Large Location Data (대용량 위치 데이터에서 효율적인 k-최근접 질의 처리 기법)

  • Choi, Dojin;Lim, Jongtae;Yoo, Seunghun;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.619-630
    • /
    • 2017
  • With the growing popularity of smart devices, various location based services have been providing to users. Recently, some location based social applications that combine social services and location based services have been emerged. The demands of a k-nearest neighbors(k-NN) query which finds k closest locations from a user location are increased in the location based social network services. In this paper, we propose an approximate k-NN query processing method for fast response time in a large number of users environments. The proposed method performs efficient stream processing using big data distributed processing technologies. In this paper, we also propose a modified grid index method for indexing a large amount of location data. The proposed query processing method first retrieves the related cells by considering a user movement. By doing so, it can make an approximate k results set. In order to show the superiority of the proposed method, we conduct various performance evaluations with the existing method.

A Study on the Improvement of Digital Periapical Images using Image Interpolation Methods (영상보간법을 이용한 디지털 치근단 방사선영상의 개선에 관한 연구)

  • Song Nam-Kyu;Koh Kawng-Joon
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.2
    • /
    • pp.387-413
    • /
    • 1998
  • Image resampling is of particular interest in digital radiology. When resampling an image to a new set of coordinate, there appears blocking artifacts and image changes. To enhance image quality, interpolation algorithms have been used. Resampling is used to increase the number of points in an image to improve its appearance for display. The process of interpolation is fitting a continuous function to the discrete points in the digital image. The purpose of this study was to determine the effects of the seven interpolation functions when image resampling in digital periapical images. The images were obtained by Digora, CDR and scanning of Ektaspeed plus periapical radiograms on the dry skull and human subject. The subjects were exposed to intraoral X-ray machine at 60kVp and 70 kVp with exposure time varying between 0.01 and 0.50 second. To determine which interpolation method would provide the better image, seven functions were compared; (1) nearest neighbor (2) linear (3) non-linear (4) facet model (5) cubic convolution (6) cubic spline (7) gray segment expansion. And resampled images were compared in terms of SNR(Signal to Noise Ratio) and MTF(Modulation Transfer Function) coefficient value. The obtained results were as follows ; 1. The highest SNR value(75.96dB) was obtained with cubic convolution method and the lowest SNR value(72.44dB) was obtained with facet model method among seven interpolation methods. 2. There were significant differences of SNR values among CDR, Digora and film scan(P<0.05). 3. There were significant differences of SNR values between 60kVp and 70kVp in seven interpolation methods. There were significant differences of SNR values between facet model method and those of the other methods at 60kVp(P<0.05), but there were not significant differences of SNR values among seven interpolation methods at 70kVp(P>0.05). 4. There were significant differences of MTF coefficient values between linear interpolation method and the other six interpolation methods (P< 0.05). 5. The speed of computation time was the fastest with nearest -neighbor method and the slowest with non-linear method. 6. The better image was obtained with cubic convolution, cubic spline and gray segment method in ROC analysis. 7. The better sharpness of edge was obtained with gray segment expansion method among seven interpolation methods.

  • PDF