• 제목/요약/키워드: k-means clustering Algorithm

검색결과 547건 처리시간 0.027초

집단화를 위한 병렬 알고리즘의 구현 (Parallel Algorithm For Level Clustering)

  • 배용근
    • 한국정보처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.148-155
    • /
    • 1995
  • 많은 양의 패턴들을 분석할 때, 이 패턴들을 어떤 평가함수에 의해서 여러 군으로 집단화할 필요가 있다. 이 과정은 입력 패턴의 수가 많을 경우 상당한 량의 계산을 필 요로 하며, 이를 위한 병렬화 알고리즘이 요구된다. 이 문제를 해결하기 위하여 본 논 문은 K-means 알고리즘을 병렬화한 병렬 집단화 알고리즘을 제안하고, 메세지 전송을 근간으로 하는 MIMD 병렬 컴퓨터하에서 이를 수행하였다. 실험 및 성능 분석을 통하여 입력 패턴이 많을 경우, 본 병렬 알고리즘이 적절함을 알 수 있었다.

  • PDF

퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.

합성곱 오토인코더 기반의 응집형 계층적 군집 분석 (Agglomerative Hierarchical Clustering Analysis with Deep Convolutional Autoencoders)

  • 박노진;고한석
    • 한국멀티미디어학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Clustering methods essentially take a two-step approach; extracting feature vectors for dimensionality reduction and then employing clustering algorithm on the extracted feature vectors. However, for clustering images, the traditional clustering methods such as stacked auto-encoder based k-means are not effective since they tend to ignore the local information. In this paper, we propose a method first to effectively reduce data dimensionality using convolutional auto-encoder to capture and reflect the local information and then to accurately cluster similar data samples by using a hierarchical clustering approach. The experimental results confirm that the clustering results are improved by using the proposed model in terms of clustering accuracy and normalized mutual information.

Nonparametric analysis of income distributions among different regions based on energy distance with applications to China Health and Nutrition Survey data

  • Ma, Zhihua;Xue, Yishu;Hu, Guanyu
    • Communications for Statistical Applications and Methods
    • /
    • 제26권1호
    • /
    • pp.57-67
    • /
    • 2019
  • Income distribution is a major concern in economic theory. In regional economics, it is often of interest to compare income distributions in different regions. Traditional methods often compare the income inequality of different regions by assuming parametric forms of the income distributions, or using summary statistics like the Gini coefficient. In this paper, we propose a nonparametric procedure to test for heterogeneity in income distributions among different regions, and a K-means clustering procedure for clustering income distributions based on energy distance. In simulation studies, it is shown that the energy distance based method has competitive results with other common methods in hypothesis testing, and the energy distance based clustering method performs well in the clustering problem. The proposed approaches are applied in analyzing data from China Health and Nutrition Survey 2011. The results indicate that there are significant differences among income distributions of the 12 provinces in the dataset. After applying a 4-means clustering algorithm, we obtained the clustering results of the income distributions in the 12 provinces.

K-평균 군집방법을 이요한 가중커널분류기 (Kernel Pattern Recognition using K-means Clustering Method)

  • 백장선;심정욱
    • 응용통계연구
    • /
    • 제13권2호
    • /
    • pp.447-455
    • /
    • 2000
  • 본 논문에서는 커널분류기에 요구되는 다량의 계산량과 자료저장공간을 감소시키도록 고안된 최적군집방법을 적용한 K-평균 가중커널분류기법이 제안되었다. 이 방법은 원래의 훈련표본보다 작은 수의 참고벡터들과 그들의 가중값을 들을 찾아 원래 커널분류 기준을 근사화하여 패턴을 인식하는 것이다. K-평균 가중커널분류기법은 가중파젠윈도우(WPW)분류기법을 개량한 것으로서 참고벡터들을 계산하기 위한 초기 부적절하게 군집된 관측값들을 최적으로 재군집화 함으로써 WPW기법의 단범을 극복하였다. 실제자료들에 제안된 방법을 적용한 결과 WPW분류기법보다 참고벡터들의 대표성과 자료축소면에서 월등히 향상된 결과를 확인하였다

  • PDF

Korean Phoneme Recognition by Combining Self-Organizing Feature Map with K-means clustering algorithm

  • Jeon, Yong-Ku;Lee, Seong-Kwon;Yang, Jin-Woo;Lee, Hyung-Jun;Kim, Soon-Hyob
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.1046-1051
    • /
    • 1994
  • It is known that SOFM has the property of effectively creating topographically the organized map of various features on input signals, SOFM can effectively be applied to the recognition of Korean phonemes. However, is isn't guaranteed that the network is sufficiently learned in SOFM algorithm. In order to solve this problem, we propose the learning algorithm combined with the conventional K-means clustering algorithm in fine-tuning stage. To evaluate the proposed algorithm, we performed speaker dependent recognition experiment using six phoneme classes. Comparing the performances of the Kohonen's algorithm with a proposed algorithm, we prove that the proposed algorithm is better than the conventional SOFM algorithm.

  • PDF

Improved Classification Algorithm using Extended Fuzzy Clustering and Maximum Likelihood Method

  • Jeon Young-Joon;Kim Jin-Il
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.447-450
    • /
    • 2004
  • This paper proposes remotely sensed image classification method by fuzzy c-means clustering algorithm using average intra-cluster distance. The average intra-cluster distance acquires an average of the vector set belong to each cluster and proportionates to its size and density. We perform classification according to pixel's membership grade by cluster center of fuzzy c-means clustering using the mean-values of training data about each class. Fuzzy c-means algorithm considered membership degree for inter-cluster of each class. And then, we validate degree of overlap between clusters. A pixel which has a high degree of overlap applies to the maximum likelihood classification method. Finally, we decide category by comparing with fuzzy membership degree and likelihood rate. The proposed method is applied to IKONOS remote sensing satellite image for the verifying test.

  • PDF

공유자전거 시스템의 이용 예측을 위한 K-Means 기반의 군집 알고리즘 (A K-Means-Based Clustering Algorithm for Traffic Prediction in a Bike-Sharing System)

  • 김경옥;이창환
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권5호
    • /
    • pp.169-178
    • /
    • 2021
  • 최근 들어 공유자전거 시스템은 대중교통 이용이 어렵거나 불가능한 마지막 목적지까지의 거리인 "라스트 마일"을 해소하는 방안으로 주목받고 있다. 공유자전거 시스템에서는 자전거의 대여와 반납의 불균형으로 인해서 사용자가 원하는 시간에 원하는 대여소에서 자전거를 빌리거나 반납할 수 있는 문제가 자주 발생한다. 이에 자전거 재배치는 공유자전거 시스템을 효율적으로 운영하는데 매우 중요한 이슈이다. 자전거 재배치를 효율적이고 효과적으로 진행하기 위해서는 무엇보다 정확한 수요 예측이 이뤄져야 한다. 최근에는 대여소의 수요를 보다 정확하게 예측하기 위해 군집 기반의 수요 예측 모델을 활용하는 방법이 개발되고 있는데, 여기서는 군집 분석 단계가 매우 중요하다. 이 연구에서는 비결정적이고 수렴이 어려운 기존의 공유자전거 수요 예측을 위한 군집 방법의 단점을 극복하는 k-means 기반의 군집 알고리즘을 제안한다. 이 방법은 초기 중심점 방법을 활용하기 때문에 매번 동일한 결과를 얻을 수 있으며, 대여소의 시간별 반납/대여 비중을 이용하여 기존 방법과는 달리 이전 단계의 군집 결과를 필요로 하지 않아 반복해서 군집 분석을 수행할 필요가 없어 빠른 군집 분석이 가능한 장점이 있다.

ASA 군집화를 이용한 군집수 결정 및 다양한 실험 (Finding the Number of Clusters and Various Experiments Based on ASA Clustering Method)

  • 윤복식
    • 한국경영과학회지
    • /
    • 제31권2호
    • /
    • pp.87-98
    • /
    • 2006
  • In many cases of cluster analysis we are forced to perform clustering without any prior knowledge on the number of clusters. But in some clustering methods such as k-means algorithm it is required to provide the number of clusters beforehand. In this study, we focus on the problem to determine the number of clusters in the given data. We follow the 2 stage approach of ASA clustering algorithm and mainly try to improve the performance of the first stage of the algorithm. We verify the usefulness of the method by applying it for various kinds of simulated data. Also, we apply the method for clustering two kinds of real life qualitative data.

빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘 (Improved TI-FCM Clustering Algorithm in Big Data)

  • 이광규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.419-424
    • /
    • 2019
  • FCM 알고리즘은 반복 최적화 기법을 통해 최적해를 찾는다. 특히, 클러스터링 초기 중심과 잡음의 위치, 몰려있는 밀도의 위치, 개수에 따라 실행시간 차이가 난다. 하지만 이 방법은 중심점을 점차 갱신해 나가는 방법으로 초기 클러스터 중심이 한 쪽으로 치우치게 되고 클러스터링 결과의 편차가 심해 클러스터링 대푯값의 신뢰도가 떨어진다. 따라서 본 논문에서는 삼각부등식을 이용하여 클러스터 간 거리를 최대한 멀어지게 하여 클러스터 중심 밀도를 결정하는 TI-FCM(Triangular Inequality-Fuzzy C-Means:삼각부등식-FCM)클러스터링 알고리즘을 제안한다. 제안된 방법은 대용량의 빅데이터에서도 FCM에 비해 실제 클러스터에 수렴하는 효과적인 방법이고 실험을 통해 기존 FCM보다 실행시간이 감소됨을 보였다.