• Title/Summary/Keyword: k-fractional derivative

Search Result 96, Processing Time 0.026 seconds

A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION MODEL IN PKPD

  • Byun, Jong Hyuk;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2020
  • Many compartment models assume a kinetically homogeneous amount of materials that have well-stirred compartments. However, based on observations from such processes, they have been heuristically fitted by exponential or gamma distributions even though biological media are inhomogeneous in real environments. Fractional differential equations using a specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are recently introduced to account for abnormal drug disposition. We discuss a tumor growth inhibition (TGI) model using fractional-order derivative from it. This represents a tumor growth delay by cytotoxic agents and additionally show variations in the equilibrium points by the change of fractional order. The result indicates that the equilibrium depends on the tumor size as well as a change of the fractional order. We find that the smaller the fractional order, the smaller the equilibrium value. However, a difference of them is the number of concavities and this indicates that TGI over time profile for fitting or prediction should be determined properly either fractional order or tumor sizes according to the number of concavities shown in experimental data.

NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER CONTROL SYSTEM

  • Cai, X.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.229-241
    • /
    • 2007
  • Multi-term fractional differential equations have been used to simulate fractional-order control system. It has been demonstrated the necessity of the such controllers for the more efficient control of fractional-order dynamical system. In this paper, the multi-term fractional ordinary differential equations are transferred into equivalent a system of equations. The existence and uniqueness of the new system are proved. A fractional order difference approximation is constructed by a decoupled technique and fractional-order numerical techniques. The consistence, convergence and stability of the numerical approximation are proved. Finally, some numerical results are presented to demonstrate that the numerical approximation is a computationally efficient method. The new method can be applied to solve the fractional-order control system.

SOME FAMILIES OF INFINITE SERIES SUMMABLE VIA FRACTIONAL CALCULUS OPERATORS

  • Tu, Shih-Tong;Wang, Pin-Yu;Srivastava, H.M.
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.111-125
    • /
    • 2002
  • Many different families of infinite series were recently observed to be summable in closed forms by means of certain operators of fractional calculus(that is, calculus of integrals and derivatives of any arbitrary real or complex order). In this sequel to some of these recent investigations, the authors present yet another instance of applications of certain fractional calculus operators. Alternative derivations without using these fractional calculus operators are shown to lead naturally a family of analogous infinite sums involving hypergeometric functions.

  • PDF

POSITIVE SOLUTIONS FOR MULTI-POINT BOUNDARY VALUE PROBLEM OF FRACTIONAL FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Wang, Haihua
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.1_2
    • /
    • pp.147-160
    • /
    • 2012
  • In this paper, we establish some sufficient conditions for the existence of positive solutions for a class of multi-point boundary value problem for fractional functional differential equations involving the Caputo fractional derivative. Our results are based on two fixed point theorems. Two examples are also provided to illustrate our main results.

A NEW APPLICATION OF ADOMIAN DECOMPOSITION METHOD FOR THE SOLUTION OF FRACTIONAL FOKKER-PLANCK EQUATION WITH INSULATED ENDS

  • Ray, Santanu Saha
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1157-1169
    • /
    • 2010
  • This paper presents the analytical solution of the fractional Fokker-Planck equation by Adomian decomposition method. By using initial conditions, the explicit solution of the equation has been presented in the closed form and then the numerical solution has been represented graphically. Two different approaches have been presented in order to show the application of the present technique. The present method performs extremely well in terms of efficiency and simplicity.

FRACTIONAL HAMILTON-JACOBI EQUATION FOR THE OPTIMAL CONTROL OF NONRANDOM FRACTIONAL DYNAMICS WITH FRACTIONAL COST FUNCTION

  • Jumarie, Gyu
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.215-228
    • /
    • 2007
  • By using the variational calculus of fractional order, one derives a Hamilton-Jacobi equation and a Lagrangian variational approach to the optimal control of one-dimensional fractional dynamics with fractional cost function. It is shown that these two methods are equivalent, as a result of the Lagrange's characteristics method (a new approach) for solving non linear fractional partial differential equations. The key of this results is the fractional Taylor's series $f(x+h)=E_{\alpha}(h^{\alpha}D^{\alpha})f(x)$ where $E_{\alpha}(.)$ is the Mittag-Leffler function.

Global Existence and Ulam-Hyers Stability of Ψ-Hilfer Fractional Differential Equations

  • Kucche, Kishor Deoman;Kharade, Jyoti Pramod
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.3
    • /
    • pp.647-671
    • /
    • 2020
  • In this paper, we consider the Cauchy-type problem for a nonlinear differential equation involving a Ψ-Hilfer fractional derivative and prove the existence and uniqueness of solutions in the weighted space of functions. The Ulam-Hyers and Ulam-Hyers-Rassias stabilities of the Cauchy-type problem is investigated via the successive approximation method. Further, we investigate the dependence of solutions on the initial conditions and their uniqueness using 𝜖-approximated solutions. Finally, we present examples to illustrate our main results.

CONTINUATION THEOREM OF FRACTIONAL ORDER EVOLUTIONARY INTEGRAL EQUATIONS

  • El-Sayed, Ahmed M.A.;Aly, Mohamed A.E.
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.695-703
    • /
    • 2002
  • The fractional order evolutionary integral equations have been considered by first author in [6], the existence, uniqueness and some other properties of the solution have been proved. Here we study the continuation of the solution and its fractional order derivative. Also we study the generality of this problem and prove that the fractional order diffusion problem, the fractional order wave problem and the initial value problem of the equation of evolution are special cases of it. The abstract diffusion-wave problem will be given also as an application.

EXISTENCE OF EVEN NUMBER OF POSITIVE SOLUTIONS TO SYSTEM OF FRACTIONAL ORDER BOUNDARY VALUE PROBLEMS

  • Krushna, B.M.B.;Prasad, K.R.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.255-268
    • /
    • 2018
  • We establish the existence and multiplicity of positive solutions to a coupled system of fractional order differential equations satisfying three-point boundary conditions by utilizing Avery-Henderson functional fixed point theorems and under suitable conditions.

A PREDICTOR-CORRECTOR METHOD FOR FRACTIONAL EVOLUTION EQUATIONS

  • Choi, Hong Won;Choi, Young Ju;Chung, Sang Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1725-1739
    • /
    • 2016
  • Abstract. Numerical solutions for the evolutionary space fractional order differential equations are considered. A predictor corrector method is applied in order to obtain numerical solutions for the equation without solving nonlinear systems iteratively at every time step. Theoretical error estimates are performed and computational results are given to show the theoretical results.