• Title/Summary/Keyword: k-최근접 질의

Search Result 73, Processing Time 0.024 seconds

Combining R-trees and Signature Files for Handling k-Nearest Neighbor Queries with Non-spatial Predicates (비공간 검색 조건이 포함된 k-최근접 질의 처리를 위한 R-트리와 시그니쳐 파일의 결합)

  • Park, Dong-Ju;Kim, Hyeong-Ju
    • Journal of KIISE:Databases
    • /
    • v.27 no.4
    • /
    • pp.651-662
    • /
    • 2000
  • 멀티미디어 데이터베이스에서 k-최근접 질의는 가장 일반적이며, 비공간 검색 조건이 포함된 경우가 많다. 현재까지 이러한 질의를 위한 여러 기법 중에서 Hjaltason과 Samet이 제안한 점증적 최근접 알고리즘에 가장 유용하다고 알려져 있다. 질의 처리를 위해 상위 연산자가 k보다 많은 객체를 요구할 때, 이 알고리즘은 처음부터 질의를 재실행하지 않고 다음 객체를 전달할 수 있기 때문이다. 그런데, 이 알고리즘에서 사용하는 R-트리는 결국에는 비공간 검색조건을 만족시키지 않을 투플 후보들을 부분적으로 제거할 수가 없기 때문에 비효율적이다. 본 논문에서 우리는 이 알고리즘을 보완한 RS-트리 기반 점증적 최근접 알고리즘을 제안한다. RS-트리는 R-트리와, 그 보조 트리로서 계층적 시스니쳐 파일을 기반으로 하는 S-트리로 구성된다. S-트리는 R-트리를 탐색하는 과정에서 많은 불필요한 투플을 제거하는 역할을 수행한다. 본 논문에서는 실험을 통해 RS-트리가 Hjaltason과 Samet의 알고리즘의 성능을 향상시킬 수 있음을 보인다.

  • PDF

Range and k-Nearest Neighbor Query Processing Algorithms using Materialization Techniques in Spatial Network Databases (공간 네트워크 데이터베이스에서 실체화 기법을 이용한 범위 및 k-최근접 질의처리 알고리즘)

  • Kim, Yong-Ki;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.9 no.2
    • /
    • pp.67-79
    • /
    • 2007
  • Recently, to support LBS(location-based services) and telematics applications efficiently, there have been many researches which consider the spatial network instead of Euclidean space. However, existing range query and k-nearest neighbor query algorithms show a linear decrease in performance as the value of radius and k is increased. In this paper, to increase the performance of query processing algorithm, we propose materialization-based range and k-nearest neighbor algorithms. In addition, we make the performance comparison to show the proposed algorithm achieves better retrieval performance than the existing algorithm.

  • PDF

Query Allocation Method for Efficient Distributed Processing of an Approximate k-Nearest Neighbor Query (효과적인 근사 k-최근접 분산 처리를 위한 질의 할당 기법)

  • Choi, Do-Jiin;Lim, Jong-Tae;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.9-10
    • /
    • 2018
  • 모바일 기기의 대중화 및 위치 인식 기술의 발달로 다양한 위치 기반 서비스가 제공되고 있다. 많은 위치 기반 서비스에서는 현재 위치에서 가장 가까운 k개의 아이템을 찾는 k-최근접 질의가 빈번하게 활용되고 있다. 본 논문에서는 효율적인 k-최근접 분산 질의 처리를 질의 할당 기법을 제안한다. 질의 처리 할당을 위해 질의 통계 값을 활용한 질의 모형을 정의하고 규칙 기반의 질의 할당을 수행한다. 성능 평가를 통해 제안하는 기법의 우수성을 보인다.

  • PDF

Reverse k-Nearest Neighbor Query Processing Method for Continuous Query Processing in Bigdata Environments (빅데이터 환경에서 연속 질의 처리를 위한 리버스 k-최근접 질의 처리 기법)

  • Lim, Jongtae;Park, Sunyong;Seo, Kiwon;Lee, Minho;Bok, Kyoungsoo;Yoo, Jaesoo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.10
    • /
    • pp.454-462
    • /
    • 2014
  • With the development of location aware technologies and mobile devices, location-based services have been studied. To provide location-based services, many researchers proposed methods for processing various query types with Mapreduce(MR). One of the proposed methods, is a Reverse k-nearest neighbor(RkNN) query processing method with MR. However, the existing methods spend too much cost to process the continuous RkNN query. In this paper, we propose an efficient continuous RkNN query processing method with MR to resolve the problems of the existing methods. The proposed method uses the 60-degree-pruning method. The proposed method does not need to reprocess the query for continuous query processing because the proposed method draws and monitors the monitoring area including the candidate objects of a RkNN query. In order to show the superiority of the proposed method, we compare it with the query processing performance of the existing method.

k-NN Query Optimization Scheme Based on Machine Learning Using a DNN Model (DNN 모델을 이용한 기계 학습 기반 k-최근접 질의 처리 최적화 기법)

  • We, Ji-Won;Choi, Do-Jin;Lee, Hyeon-Byeong;Lim, Jong-Tae;Lim, Hun-Jin;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.10
    • /
    • pp.715-725
    • /
    • 2020
  • In this paper, we propose an optimization scheme for a k-Nearest Neighbor(k-NN) query, which finds k objects closest to the query in the high dimensional feature vectors. The k-NN query is converted and processed into a range query based on the range that is likely to contain k data. In this paper, we propose an optimization scheme using DNN model to derive an optimal range that can reduce processing cost and accelerate search speed. The entire system of the proposed scheme is composed of online and offline modules. In the online module, a query is actually processed when it is issued from a client. In the offline module, an optimal range is derived for the query by using the DNN model and is delivered to the online module. It is shown through various performance evaluations that the proposed scheme outperforms the existing schemes.

A Batch Processing Algorithm for Moving k-Nearest Neighbor Queries in Dynamic Spatial Networks

  • Cho, Hyung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.63-74
    • /
    • 2021
  • Location-based services (LBSs) are expected to process a large number of spatial queries, such as shortest path and k-nearest neighbor queries that arrive simultaneously at peak periods. Deploying more LBS servers to process these simultaneous spatial queries is a potential solution. However, this significantly increases service operating costs. Recently, batch processing solutions have been proposed to process a set of queries using shareable computation. In this study, we investigate the problem of batch processing moving k-nearest neighbor (MkNN) queries in dynamic spatial networks, where the travel time of each road segment changes frequently based on the traffic conditions. LBS servers based on one-query-at-a-time processing often fail to process simultaneous MkNN queries because of the significant number of redundant computations. We aim to improve the efficiency algorithmically by processing MkNN queries in batches and reusing sharable computations. Extensive evaluation using real-world roadmaps shows the superiority of our solution compared with state-of-the-art methods.

An Efficient Construction of Sage Regions for Combined K-NN Query and Non-Place Attributes (K-최근접 질의와 비공간 속성을 결합한 효율적인 안전 영역 할당 기법)

  • Chung, Jae-Wool;Kim, Ung-Mo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.103-104
    • /
    • 2016
  • 본 논문에서는 GPS의 보급과 무선 통신의 발달로 급격하게 성장 중인 위치 기반 서비스에 대한 연구를 진행하였다. 위치 기반 서비스를 효율적으로 활용하기 위해서 연속 범위 질의(continuous range query)에 비공간적 특성과 K-최근접 질의를 결합한 안전 영역 할당 기법에 대해서 연구를 진행했다. 기존의 안전 영역은 객체간의 거리만으로 할당을 했지만, 본 논문에서는 객체간의 속성이 다르면 안전 영역을 할당하지 않는 기법을 제안했다. 실험결과 기존의 알고리즘 보다 통신 비용이 감소함을 확인할 수 있었지만 K 값에 따른 오차가 발생함을 확인했고 향후, 연구를 지속할 필요가 있다.

  • PDF

A Efficient Method of Extracting Split Points for Continuous k Nearest Neighbor Search Without Order (무순위 연속 k 최근접 객체 탐색을 위한 효율적인 분할점 추출기법)

  • Kim, Jin-Deog
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.927-930
    • /
    • 2010
  • Recently, continuous k-nearest neighbor query(CkNN) which is defined as a query to find the nearest points of interest to all the points on a given path is widely used in the LBS(Location Based Service) and ITS(Intelligent Transportation System) applications. It is necessary to acquire results quickly in the above applications and be applicable to spatial network databases. This paper proposes a new method to search nearest POIs(Point Of Interest) for moving query objects on the spatial networks. The method produces a set of split points and their corresponding k-POIs as results. There is no order between the POIs. The analysis show that the proposed method outperforms the existing methods.

  • PDF

k-Nearest Neighbor Query Optimization Scheme Using Data Distributions and Query Processing Costs in Distance Based Indexing (거리 기반 색인에서 데이터 분포 및 질의 처리 비용을 이용한 k-최근접 질의 최적화 기법)

  • Choi, do-jin;Lee, hyeon-byeong;Kim, yeon-dong;Wee, ji-won;Park, song-hee;Lim, jong-tae;Bok, kyoung-soo;Yoo, jae-soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2019.05a
    • /
    • pp.443-444
    • /
    • 2019
  • 효율적인 이미지 검색을 위해 고차원 데이터 색인에 대한 연구가 진행되고 있다. 거리 기반 색인 구조는 다차원 데이터를 색인하는데 자주 활용되는데, k-최근접 질의 처리에서 초기 탐색 범위를 전체 영역의 1%만으로 결정한다. 본 논문에서는 거리 기반 색인구조에서 k-최근접 질의를 효율적으로 처리하기 위해 데이터 분포 기반의 최적화 및 질의 처리 비용 기반 최적화 기법을 제안한다.

  • PDF

Analysis of k-Nearest Neighbor Search in High-Demensional Vector Spaces (고차원 벡터 공간에서 k-최근접 검색에 관한 분석)

  • 최승락;곽태영;신봉근;이윤준;김명호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10b
    • /
    • pp.191-193
    • /
    • 1998
  • 지금까지 제시된 최근접 질의 알고리즘은다소간의 cklms 있으나 기본적으로 질의 점과 MBR간의 최소거리에 기반한 분기와 한정 기법을 이용하고 있다. 그러나 차원이 증가함에 따라 질의 구와 겹치는 노드가 급속히 증가하기 때문에 최근접 질의 알고리즘의 성능은 매우 비효율적이다. 이러한 문제를 해결하기 위해서 MBR 간의 중첩을 줄이고 MBR 내에 가급적 많은 점을 포함할 수 있는 다양한 다차원 색인 구조가 제시도 되었다. 그러나 우리의 실험에 의하면 이러한 방법이 근본적인 해결책이 되지 못함을 알 수 있다. 고차원 백터 공간 모델이 가지는 문제로써 임의의 질의 점으로부터 모든 데이터 점들까지의 거리가 차원이 올라감에 따라 유사해지는 현상 때문에 비효율적인 성능이 나옴을 본 논문에서 지적한다.