• Title/Summary/Keyword: k-$\varepsilon$모델

Search Result 248, Processing Time 0.028 seconds

Numerical Analysis of Cryogenic Liquid Nitrogen Jets at Supercritical Pressures using Multi-Environment Probability Density Function approach (다점 확률분포 모델을 이용한 초임계 압력 액체질소 제트 해석)

  • Jung, Kiyoung;Kim, Namsu;Kim, Yongmo
    • Journal of ILASS-Korea
    • /
    • v.22 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • This paper describes numerical modeling of transcritical and supercritical fluid flows within a liquid propellant rocket engine. In the present paper, turbulence is modeled by standard $k-{\varepsilon}$ model. A conserved scalar approach in conjunction with multi-environment probability density function model is used to account for the turbulent mixing of real-fluids in the transcritical and supercritical region. The two real-fluid equations of state and dense-fluid correction schemes for mixtures are used to construct thermodynamic data library based on the conserved scalar. In this study, calculations are made on two cryogenic nitrogen jets under different chamber pressures. Sensitivity analysis for two different real-fluid equations of sate is particularly emphasized. Based on numerical results, precise structures of cryogenic nitrogen jets are discussed in detail. Numerical results show that the current real-fluid model can predict the essential features of the cryogenic liquid nitrogen jets.

A Study on the Flow Characteristics of Steady State and Pressure Variation inside the Mulffler with the Inflow of Pulsating Exhaust Gas (소음기내의 정상상태 및 맥동파 배기가스 유입에 의한 유동특성에 관한 연구)

  • 김민호;정우인;천인범
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.150-159
    • /
    • 1999
  • Exhaust system is composed of several parts. Among, them , design of muffler system strongly influences on engine efficiency and noise reduction. So , through comprehension of flow characteristics inside muffler is necessary . In this study , three-dimensional steady and unsteady compressible flow analysis was performed to understand the flow characteristics, pressure loss and amplitude variation of pulsating pressure. The computational grid generation was carried out using commercial preprocessor ICEM CFD/CAE. And the three-dimensional fluid motion inside the muffler was analyzed by STAR-CD, the computational fluid dynamics code. RNG k-$\varepsilon$ tubulence model was applied to consider the complexity of the geometry and fluid motion. The steady and unsteady flow field inside muffler such as velocity distribution, pulsating pressure and pressure loss was examined. In case of unsteady state analysis, velocity of inlet region was converted from measured pulsating pressure. Experimental measurement of pressure and temperature was carried out to provide the boundary and initial condition for computational study under three engine operating conditions. As a result of this study, we could identify the flow characteristics inside the muffler and obtain the pressure loss, amplitude variation of pulsating exhaust gas.

  • PDF

Study of SNCR Application to Industrial Boiler for NOx Control (산업용 보일러의 질소산화물 제어를 위한 SNCR 적용 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Jang, Dong-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.286-292
    • /
    • 2005
  • This study is to investigate the industrial boiler which can be significantly affected by the restriction of NOx. Note that the application of SNCR method to industrial boiler is usually blown as not feasible due to the insufficient residence time for proper mixing. The purpose of this study is to investigate the applicability of the SNCR system application to the industrial boiler, which produces 40 tons of steam per hour using heavy oil. For the industrial boiler with 3-D rectangular coordinate, the general coding are made fur various turbulence modeling such as turbulent flow, turbulent fuel combustion, thermal NO formation and destruction together with the NO reaction with reducing agents. Further, the incorporation of drop trajectory model is successfully made in 3-D rectangular coordinate with Lagrangian frame and the main swirl burner effect on the characteristics of flame is considered. As expected a short flame was created and thereby NOx is removed more efficiently by increasing the proper region of temperature for NO reduction reaction. The validation of program was made successfully by the comparison of experimental data. Based on the reliable calculation results, the SNCR method in a industrial boiler shows the possibility as one of viable NO reduction method by the use of well designed mixing air of reducing agent.

A Study on Analysis of vortex and Wave Screening Performance for Fixed-Floating Breakwater According to Cross section (단면형상 변화에 따른 고정된 부유식방파제의 유동장 분석과 소파성능에 관한 연구)

  • Kim, Heun;Yoon, Jae Seon;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.54-54
    • /
    • 2011
  • 기존의 착저식 방파제를 보완하기 위하여 부유식 방파제가 개발되었고, 많은 연구가 선행되어 왔다. 부유식 방파제의 최대 장점은 경제성과 친환경성이다. 그러나 부유식 방파제는 소파성능이 떨어진다는 단점이 있으며, 이를 개선하기 위해 잠재와 혼용, 배열형에 관한 연구등이 선행되어왔다. 그러나 이것은 경제성이라는 강점을 고려하지 못하였다. 그래서 본 연구에서는 부유식 방파제의 중요한 장점중 하나인 경제성을 고려해, 단면현상 변화만을 이용하여 부유식 방파제의 소파성능 개선하고자 하였다. RANS(Reynolds averaged Navier-Stokes) 방정식에 기초하여 VOF법과 $k-{\varepsilon}$ 난류모델을 결합한 수치모델인 CADMAS-SURF를 이용하였으며, 구조물 단면형상 변화를 이용해 와의 상호 간섭을 유도하였고, 이에 따른 투과율 변화를 관찰 하였다. 결과를 살펴보면 요철1 단면에서는 구조물 전면 하단부분과 구조물 후면 하단부분에서 와의 간섭이 일어났으며 가장 아래 요철 부분에서 유속의 전달현상이 보인다. 투과계수는 일반적인 부유식 방파제와 마찬가지로 L/B가 1~4사이 값인, 비교적 단주기에서는 0.3~0.4의 투과율을 보였으나 L/B가 5를 넘어가면서 0.45~0.55의 투과율을 보였고, 요철2 단면에서는 전면과 후면에서 발달한 와가 전, 후면 돌출부에 의해 바닥까지 전파되지 못하는 양상을 보였으며, 돌출부 사이 중앙부분에서 가장 활발한 와의 간섭을 관찰 할 수 있었다. 돌출부 아래에서 역시 강력한 와의 간섭을 보이고 있다. 투과율 역시 가장 낮은 값을 보였으며 비교적 단주기 구간인 B/L 1~4 에서는 0.2~0.35 사이의 값을 가졌으며 5~10사이구간에서는 0.35~0.34의 값을 보이고 있다. 이 같은 결과는 와의 간섭이 가장 활발하게 나타난 결과로 보인다. 그리고 요철 3단면에서는 전면 돌출부 끝단에서의 활발한 와의 간섭을 관찰 할 수 있었다. 투과율은 세 단면 중 가장 높은 값의 투과율을 보이지만 B/L 3~4 구간에서 요철1 경우보다 낮은 값의 투과율을 보이고 있다. 결과에서 보듯이 도출부의 적절한 조합과 배치를 통해 언급한 연구목표(와의 생성과 간섭, 방파효율 개선)를 달성하였고 추후에 돌출부의 크기와 배치, 흘수의 영향, 수심의 영향 등을 고려한 연구가 진행된다면 더욱 우수한 단면형상을 개발 할 것이라 예상된다.

  • PDF

Finite Element Analysis of Bone Stress Caused by Horizontal Misfit of Implant Supported Three-Unit Fixed Prosthodontics (3차원 유한요소법에 의한 임플란트 지지 3본 고정성 가공 의치의 부적합도가 인접골 응력에 미치는 영향 분석)

  • Lee, Seung-Hwan;Jo, Kwang-Hun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.2
    • /
    • pp.147-161
    • /
    • 2012
  • This study is to assess the effect of horizontal misfit of an implant supported 3-unit fixed prosthodontics on the stress development at the marginal cortical bone surrounding implant neck. Two finite element models consisting of a three unit fixed prosthodontics and an implant/bone complex were constructed on a three dimensional basis. The three unit fixed prosthodontics were designed either shorter (d=17.8mm model) or longer (d=18.0mm model) by 0.1mm than the span of two implants placed at the mandibular second premolar and second molar areas 17.9mm apart. Fitting of the fixed prosthodontics onto the implant abutments was simulated by a total of 6 steps, that is to say, 0.1mm displacement per each step, using DEFORM 3D (ver 6.1, SFTC, Columbus, OH, USA) program. Stresses in the fixed prosthodontics and implants were evaluated using von-Mises stress, maximum compressive stress, and radial stress as necessary. The d=17.8mm model assembled successfully on to the implant abutments while d=18.0mm model did not. Regardless if the fixed prosthodontics fitted onto the abutments or not, excessively higher stresses developed during the course of assembly trial and thereafter. On the marginal cortical bone around implants during the assembly, the peak tensile and compressive stresses were as high as 186.9MPa and 114.1MPa, respectively, even after the final sitting of the fixed prosthodontics (for d=17.8mm model). For this case, the area of marginal bone subject to compressive stresses above 55MPa, equivalent of the $4,000{\mu}{\varepsilon}$, i.e. the reported threshold strain to inhibit physiological remodeling of human cortical bone, extended up to 2mm away from implant during the assembly. Horizontal misfit of 0.1mm can produce excessively high stresses on the marginal cortical bone not only during the fixed prosthodontics assembly but also thereafter.

PERFORMANCE ASSESSMENT OF THE RANS TURBULENCE MODELS IN PREDICTION OF AERODYNAMIC NOISE FOR AIR-CONDITIONER INDOOR UNIT (에어컨 실내기의 공력소음 예측을 위한 RANS 난류모델의 성능 평가)

  • Min, Y.H.;Kang, S.;Hur, N.;Lee, C.;Park, J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.81-86
    • /
    • 2012
  • The objective of the present study is to investigate the effects of various turbulence models on the aerodynamic noise of an air-conditioner (AC) indoor unit. The results from URANS (unsteady Reynolds-averaged Navier-Stokes) simulations with the standard k-$\varepsilon$, k-$\omega$ shear stress transport (SST) and Spalart-Allmaras (S-A) turbulence models were analyzed and compared with the noise data from the experiments. The frequency spectra of the far-field acoustic pressure were computed using the Farrasat equation derived from the Ffowcs Williams-Hawkings (FW-H) equation based on the acoustic analogy model. Two fixed fan casings and the rotating cross-flow fan were used as the source surfaces of the dipole noise in the Farrasat equation. The result with the standard k-$\epsilon$ model showed a much better agreement with the experimental data compared to the k-w SST and S-A models. The differences in the pressure spectra from the different turbulence models were discussed based on the instantaneous vorticity fields. It was found that the over-estimated power spectra with the k-w SST and S-A models are related to the emphasized small-scale vortices produced with these models.

Mathematical Model for the Removal of SO2 by the γ-Alumina Impregnated with CuO (γ-Alumina에 담지된 산화구리에 의한 SO2의 제거에 관한 수치모사)

  • Jeon, Bup Ju;Hong, In Kwon;Park, Kyung Ai;Jung, Il Hyun
    • Applied Chemistry for Engineering
    • /
    • v.5 no.3
    • /
    • pp.385-394
    • /
    • 1994
  • Numerical solutions were obtained to the model equations for various of the parameters characterizing the pore structure, effective internal diffusion, and the chemical reaction constant. The conversion was decreased with the cause of pore closure at the surface of reacting particles, reduction of porosity, surface area of reaction and effective diffusion coefficient in the solid with the progress of reaction. Total conversion was strongly dependent on the local conversion at surface. According to the decreasing of impregnated concentration of the copper oxide and the increase of the flue gases concentration, total conversion was increased. The conversion was affected by gas flow rate and pore size distribution in the reacting solid.

  • PDF

An Assessment of a Resilient Modulus Model by Comparing Predicted and Measured Elastic Deformation of Railway Trackbeds (철도노반의 탄성변위 예측 및 측정을 통한 회복탄성계수 모델 평가)

  • Park, Chul-Soo;Kim, Eun-Jung;Oh, Sang-Hoon;Kim, Hak-Sung;Mok, Young-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1404-1414
    • /
    • 2008
  • In the mechanistic-empirical trackbed design of railways, the resilient modulus is the key input parameter. This study focused on the resilient modulus prediction model, which is the functions of mean effective principal stress and axial strain, for three types of railroad trackbed materials such as crushed stone, weathered soil, and crushed-rock soil mixture. The model is composed with the maximum Young's modulus and nonlinear values for higher strain in parallel with dynamic shear modulus. The maximum values is modeled by model parameters, $A_E$ and the power of mean effective principal stress, $n_E$. The nonlinear portion is represented by modified hyperbolic model, with the model parameters of reference strain, ${\varepsilon}_r$ and curvature coefficient, a. To assess the performance of the prediction models proposed herein, the elastic response of a test trackbed near PyeongTaek, Korea was evaluated using a 3-D nonlinear elastic computer program (GEOTRACK) and compared with measured elastic vertical displacement during the passages of freight and passenger trains. The material types of sub-ballasts are crushed stone and weathered granite soil, respectively. The calculated vertical displacements within the sub-ballasts are within the order of 0.6mm, and agree well with measured values with the reasonable margin. The prediction models are thus concluded to work properly in the preliminary investigation.

  • PDF

Effect of Tang-gwi-eum-za-gagambang along with External Spray Therapy on the Spontaneously Occurring Atopic Dermatitis Development in NC/Nga Mouse (당귀음자가감방(當歸飮子加減方)과 외치방(外治方) 병용이 NC/Nga 아토피 생쥐에 미치는 영향)

  • Kim, Sung-Hun;Kim, Jong-Han;Park, Su-Yeon;Choi, Jung-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.18 no.1
    • /
    • pp.27-49
    • /
    • 2005
  • 당귀음자가감방(當歸飮子加減方)과 외치방(外治方) 병용의 아토피 치료 기전을 규명하고자 NC/Nga 생쥐의 동물 병태 모델을 이용하여 다양한 면역 반응을 관찰하였던 바, 다음과 같은 결론을 얻었다. 1. NC/Nga 생쥐의 피부손상 정도 16주와 20부에 대조군에 비해 36.0%, 37.8% 감소하다. 2. NC/Nga 생쥐의 혈중(血中) IgE, IL-4, IL-5, IL-6, IgM, IgG1 및 IgG2a 수준은 대조군에 비하여 유의성 있게 감소하였고, IL-13 수준은 대조군에 비하여 감소하였으나 유의성을 나타내지 않았다. 반면, $IFN-{\gamma}$ 수준은 유의성 있게 증가하다. 3. NC/Nga 생쥐의 비장 무게는 대조군에 비하여 유의성있게 감소하였다. 4. NC/Nga 생쥐의 lymph node에서 B/f ratio는 증가된 대조군에 비하여 감소하였으며, $CD4^+$$CD8^+$ 세포 발현은 대조군에 비하여 증가하였고, $CD4^+$는 유의성있는 감소를, $CD8^+$는 유의성 없는 약간의 증가를 나타내었다. $CD69^+$, CD11a 세포 발현은 대조군에 비하여 유의성있게 감소하였다. 5. NC/Nga 생쥐의 피부조직배양에서 IL-4 IL-5, CCR3 유전자 발현은 대조군에 비하여 현저히 감소하였고, IL-6, IL-13, $CD69^+/CD3{\varepsilon}^+,{\;}CD19^+/CD44^+$ 발현량은 유의성있게 감소하였으며, $IFN-{\gamma}$의 유전자 발현은 대조군에 비하여 증가하였다. 6. NC/Nga 생쥐 귀, 목의 피부 조직 변화에서는 표피와 진피의 염증 정도와 침윤된 염증 면역세포 등이 대조군에 비하여 현저하게 감소되었다. 7. Lymphokine assay에서 IL-4 발현량은 대조군에 비하여 유의성 있게 감소(減少)하였고, $IFN-{\gamma}$의 발현량은 유의성 있게 증가하였다.

  • PDF

Efficiency of Different Roof Vent Designs on Natural Ventilation of Single-Span Plastic Greenhouse (플라스틱 단동온실의 천창 종류에 따른 자연환기 효과)

  • Rasheed, Adnan;Lee, Jong Won;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.225-233
    • /
    • 2019
  • In the summer season, natural ventilation is commonly used to reduce the inside air temperature of greenhouse when it rises above the optimal level. The greenhouse shape, vent design, and position play a critical role in the effectiveness of natural ventilation. In this study, computational fluid dynamics (CFD) was employed to investigate the effect of different roof vent designs along with side vents on the buoyancy-driven natural ventilation. The boussinesq hypothesis was used to simulate the buoyancy effect to the whole computational domain. RNG K-epsilon turbulence model was utilized, and a discrete originates (DO) radiation model was used with solar ray tracing to simulate the effect of solar radiation. The CFD model was validated using the experimentally obtained greenhouse internal temperature, and the experimental and computed results agreed well. Furthermore, this model was adopted to compare the internal greenhouse air temperature and ventilation rate for seven different roof vent designs. The results revealed that the inside-to-outside air temperature differences of the greenhouse varied from 3.2 to $9.6^{\circ}C$ depending on the different studied roof vent types. Moreover, the ventilation rate was within the range from 0.33 to $0.49min^{-1}$. Our findings show that the conical type roof ventilation has minimum inside-to-outside air temperature difference of $3.2^{\circ}C$ and a maximum ventilation rate of $0.49min^{-1}$.