• Title/Summary/Keyword: k-$\omega$ turbulence model

Search Result 173, Processing Time 0.023 seconds

Three-dimensional Effects of an Axi-symmetric Pintle Nozzle (축대칭 핀틀노즐의 3차원 효과 분석)

  • Lee, Gang-Min;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.47-55
    • /
    • 2018
  • In order to determine whether three-dimensional effects exist in a pintle nozzle of axisymmetric shape, a three-dimensional numerical analysis was performed. The compressibility correction was implemented with the k-${\omega}$ SST turbulence model to predict the complex flow separation transition in acceptable accuracy. Recirculation zones were observed at both the front end and rear faces of the pintle, and the flow through the pintle nozzle conveyed complex shock wave structures. Three-dimensional effects that resulted from the reasonable flow separation location were noted, and a trace of the transient pressure increase was observed, mismatched by a two-dimensional axi-symmetric analysis.

Fluidic Thrust Vector Control Using Shock Wave Concept (충격파 개념에 기반한 유체 추력벡터제어에 관한 연구)

  • Wu, Kexin;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.4
    • /
    • pp.10-20
    • /
    • 2019
  • Recently, fluidic thrust vector control has become a core technique to control multifarious air vehicles, such as supersonic aircraft and modern rockets. Fluidic thrust vector control using the shock vector concept has many advantages for achieving great vectoring performance, such as fast vectoring response, simple structure, and low weight. In this paper, computational fluid dynamics methods are used to study a three-dimensional rectangular supersonic nozzle with a slot injector. To evaluate the reliability and stability of computational methodology, the numerical results were validated with experimental data. The pressure distributions along the upper and lower nozzle walls in the symmetry plane showed an excellent match with the test results. Several numerical simulations were performed based on the shear stress transport(SST) $k-{\omega}$ turbulence model. The effect of the momentum flux ratio was investigated thoroughly, and the performance variations have been clearly illustrated.

Study on the Resultant Vorticity Numerical Model of the Propeller Wake (프로펠러 후류의 총와도 수식모델 연구)

  • Park, Hui-Seung;Yoon, Hyun-Sik;Kim, Moon-Chan;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.141-146
    • /
    • 2011
  • This study numerically carried out the propeller open water test(POW) by solving Navier-Stokes equations governing the three-dimensional unsteady incompressible viscous flow with the turbulence closure model of the ${\kappa}-{\omega}$ SST model. Numerical simulations are performed at various range of advance ratios. Corresponding to Reynolds numbers of $5.89{\times}105{\sim}6.47{\times}105$ based on free stream velocity and the chord length at 0.7 propeller radius. The present results give a good agreement with those of the experiment. The propeller induced vortical structures have been analyzed by visualizing the resultant vorticity. As the advance ratio increases, the magnitude and length of the resultant vorticity decrease significantly. As the main focus of present study, the numerical model to present the ($r-{\theta}$) plane-averaged resultant vorticity along the streamwise direction for various advance ratios has been suggested.

Numerical study for downburst wind and its load on high-rise building

  • Huang, Guoqing;Liu, Weizhan;Zhou, Qiang;Yan, Zhitao;Zuo, Delong
    • Wind and Structures
    • /
    • v.27 no.2
    • /
    • pp.89-100
    • /
    • 2018
  • 3D simulations based on an impinging jet were carried out to investigate the flow field of a steady downburst and its effects on a high-rise building by applying the SST k-${\omega}$ turbulence model. The vertical profile of radial wind speed obtained from the simulation was compared with experimental data and empirical models in order to validate the accuracy of the present numerical method. Then wind profiles and the influence of jet velocity and jet height were investigated. Focusing on a high-rise building, the flow structures around the building, pressure distributions on the building surfaces and aerodynamic forces were analyzed in order to enhance the understanding of wind load characteristics on a high-rise building immersed in a downburst.

Thermo-Flow Analysis of Offset-Strip Fins according to Prandtl Number (Prandtl 수에 따른 옵셋 스트립 핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kong, Dong-Hyun;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.6
    • /
    • pp.340-346
    • /
    • 2009
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

Thermo-Flow Analysis of Offset-strip fins according to Prandtl Number (Plandtl 수에 따른 옵셋 스트립핀에서의 열 및 유동 분석)

  • Joo, Youn-Sik;Kim, Min-Soo;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.233-238
    • /
    • 2008
  • This paper numerically investigates thermo-flow characteristics of offset strip fins to obtain a correlation between heat transfer and pressure drop. The flow was divided into three regimes, i.e. laminar, transition and turbulent. The predicted j and f values from the SST k-$\omega$ turbulence model agreed with previous correlations with the error less than 20% in transition and turbulent regimes. Heat transfer and pressure drop were predicted by varying Prandtl number from 0.5 to 40. The Prandtl number showed little effects on pressure drop but had great effect on the heat transfer characteristics. An overall correlation to predict j was suggested by incorporating the effect of Pr and a new j correlation was suggested for each Pr.

  • PDF

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

Analysis and Calibration of Propeller Power Effect for Turboprop Aircraft (터보프롭 항공기의 프로펠러 파워효과 해석 및 보정)

  • Park, Youngmin;Chung, Jindeog
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.62-66
    • /
    • 2015
  • During the conceptual design of turboprop aircraft, the power effect driven from rotating propeller is typically obtained from empirical data. In the present paper, propeller power effect was obtained by using unsteady three-dimensional Navier-Stokes solver with $k-{\omega}$ turbulence model for the accurate prediction of turboprop aircraft performance. In order to simulate the relative motion between propeller and fuselage, unsteady sliding mesh method was used. During simulation, three flow conditions such as climb, cruise and descending flight were selected considering the flight envelop of the real turboprop aircraft. For the correction of aerodynamic coefficients, the thrust effect of engine exhaust gas was included based on the engine manufacturer's data. Using the computational results, the correction table for the aerodynamic coefficient of turboprop aircraft was suggested for the performance analysis of turboprop aircraft.

COMPARISON OF COMMERCIAL AND OPEN SOURCE CFD CODES FOR AERODYNAMIC ANALYSIS OF FLIGHT VEHICLES AT LOW SPEEDS (저속 비행체 공력해석을 위한 상용 및 오픈 소스 CFD 코드 비교)

  • Park, D.H.;Kim, C.W.;Lee, Y.G.
    • Journal of computational fluids engineering
    • /
    • v.21 no.2
    • /
    • pp.70-80
    • /
    • 2016
  • The comparison of two commercial codes(FLUENT and STAR-CCM+) and an open-source code(OpenFOAM) are carried out for the aerodynamic analysis of flight vehicles at low speeds. Tailless blended-wing-body UCAV, main wing and propeller of HALE UAV(EAV-3) are chosen as geometries for the investigation. Using the same mesh, incompressible flow simulations are carried out and the results from three different codes are compared. In the linear region, the maximum difference of lift and drag coefficients of UCAV are found to be less than 2% and 5 counts, respectively and shows good agreement with wind tunnel test data. In a stall region, however, the reliability of RANS simulation is found to become poor and the uncertainty according to code also increases. The effect of turbulence models and meshes generated from different tools are also examined. The transition model yields better results in terms of drag which are much closer to the test data. The pitching moment is confirmed to be sensitive to the existence and the location of transition. For the case of EAV-3 wing, the difference of results with ${\kappa}-{\omega}$ SST model is increased when Reynolds number becomes low. The results for the propeller show good agreement within 1% difference of thrust. The reliability and uncertainty of three codes is found to be reasonable for the purpose of engineering use. However, the physical validity and reliability of results seem to be carefully examined when ${\kappa}-{\omega}$ SST model is used for aerodynamic simulation at low speeds or low Reynolds number conditions.