• Title/Summary/Keyword: k nearest neighbor method

Search Result 316, Processing Time 0.022 seconds

Fast Search with Data-Oriented Multi-Index Hashing for Multimedia Data

  • Ma, Yanping;Zou, Hailin;Xie, Hongtao;Su, Qingtang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.7
    • /
    • pp.2599-2613
    • /
    • 2015
  • Multi-index hashing (MIH) is the state-of-the-art method for indexing binary codes, as it di-vides long codes into substrings and builds multiple hash tables. However, MIH is based on the dataset codes uniform distribution assumption, and will lose efficiency in dealing with non-uniformly distributed codes. Besides, there are lots of results sharing the same Hamming distance to a query, which makes the distance measure ambiguous. In this paper, we propose a data-oriented multi-index hashing method (DOMIH). We first compute the covariance ma-trix of bits and learn adaptive projection vector for each binary substring. Instead of using substrings as direct indices into hash tables, we project them with corresponding projection vectors to generate new indices. With adaptive projection, the indices in each hash table are near uniformly distributed. Then with covariance matrix, we propose a ranking method for the binary codes. By assigning different bit-level weights to different bits, the returned bina-ry codes are ranked at a finer-grained binary code level. Experiments conducted on reference large scale datasets show that compared to MIH the time performance of DOMIH can be improved by 36.9%-87.4%, and the search accuracy can be improved by 22.2%. To pinpoint the potential of DOMIH, we further use near-duplicate image retrieval as examples to show the applications and the good performance of our method.

A Research on Enhancement of Text Categorization Performance by using Okapi BM25 Word Weight Method (Okapi BM25 단어 가중치법 적용을 통한 문서 범주화의 성능 향상)

  • Lee, Yong-Hun;Lee, Sang-Bum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5089-5096
    • /
    • 2010
  • Text categorization is one of important features in information searching system which classifies documents according to some criteria. The general method of categorization performs the classification of the target documents by eliciting important index words and providing the weight on them. Therefore, the effectiveness of algorithm is so important since performance and correctness of text categorization totally depends on such algorithm. In this paper, an enhanced method for text categorization by improving word weighting technique is introduced. A method called Okapi BM25 has been proved its effectiveness from some information retrieval engines. We applied Okapi BM25 and showed its good performance in the categorization. Various other words weights methods are compared: TF-IDF, TF-ICF and TF-ISF. The target documents used for this experiment is Reuter-21578, and SVM and KNN algorithms are used. Finally, modified Okapi BM25 shows the most excellent performance.

A novel method for natural motion mapping as a strategy of game immediacy

  • Lee, Ji Young;Woo, Tack
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2313-2326
    • /
    • 2018
  • The method of operating a game could determine the psychological distance between the player and the game character, and thus, in the Virtual Reality, players' control methodologies are important to enhance their immersion. This study has the objective of examining the difference in games according to the method of operation based on the player's movements. This study researched the effect of the method of operating movement conforming to the movement of the character and the physical operation of the body on forming game experiences for the player. The result of performing an experiment increased reality for the game player through a controller in the shape of the actual control, to increase focus in the game. As so, game play through movements, including actual movements by the player displayed to enhance game satisfaction. In the part of media remediation field, Game can be defined as media which has their own unique hypermediacy. Especially, in the motion based game, players' movement mediates players and the game, therefore, players' movement could make players' experience augmented or immediate in accordance with the characteristics of movements. Even though sports and dances genres of motion-based games are common, RPG or adventure genres are rare. It can be explained that the characteristics of the action have been explained in the immediacy. In a game of fantasy, which is difficult to experience in real-life situations, the nature of the player's motion can increase the immersion of the game, which can contribute to utilization of players' motion and experience design in the various genres and suggestion of grounds theory. In addition, through this study, it is able to design motion-based games of various genres.

Cable anomaly detection driven by spatiotemporal correlation dissimilarity measurements of bridge grouped cable forces

  • Dong-Hui, Yang;Hai-Lun, Gu;Ting-Hua, Yi;Zhan-Jun, Wu
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.661-671
    • /
    • 2022
  • Stayed cables are the key components for transmitting loads in cable-stayed bridges. Therefore, it is very important to evaluate the cable force condition to ensure bridge safety. An online condition assessment and anomaly localization method is proposed for cables based on the spatiotemporal correlation of grouped cable forces. First, an anomaly sensitive feature index is obtained based on the distribution characteristics of grouped cable forces. Second, an adaptive anomaly detection method based on the k-nearest neighbor rule is used to perform dissimilarity measurements on the extracted feature index, and such a method can effectively remove the interference of environment factors and vehicle loads on online condition assessment of the grouped cable forces. Furthermore, an online anomaly isolation and localization method for stay cables is established, and the complete decomposition contributions method is used to decompose the feature matrix of the grouped cable forces and build an anomaly isolation index. Finally, case studies were carried out to validate the proposed method using an in-service cable-stayed bridge equipped with a structural health monitoring system. The results show that the proposed approach is sensitive to the abnormal distribution of grouped cable forces and is robust to the influence of interference factors. In addition, the proposed approach can also localize the cables with abnormal cable forces online, which can be successfully applied to the field monitoring of cables for cable-stayed bridges.

Automatic Document Classification Based on k-NN Classifier and Object-Based Thesaurus (k-NN 분류 알고리즘과 객체 기반 시소러스를 이용한 자동 문서 분류)

  • Bang Sun-Iee;Yang Jae-Dong;Yang Hyung-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1204-1217
    • /
    • 2004
  • Numerous statistical and machine learning techniques have been studied for automatic text classification. However, because they train the classifiers using only feature vectors of documents, ambiguity between two possible categories significantly degrades precision of classification. To remedy the drawback, we propose a new method which incorporates relationship information of categories into extant classifiers. In this paper, we first perform the document classification using the k-NN classifier which is generally known for relatively good performance in spite of its simplicity. We employ the relationship information from an object-based thesaurus to reduce the ambiguity. By referencing various relationships in the thesaurus corresponding to the structured categories, the precision of k-NN classification is drastically improved, removing the ambiguity. Experiment result shows that this method achieves the precision up to 13.86% over the k-NN classification, preserving its recall.

A proposed image stitching method for web-based panoramic virtual reality for Hoseo Cyber Museum (호서 사이버 박물관: 웹기반의 파노라마 비디오 가상현실에 대한 효율적인 이미지 스티칭 알고리즘)

  • Khan, Irfan;Soo, Hong Song
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.893-898
    • /
    • 2013
  • It is always a dream to recreate the experience of a particular place, the Panorama Virtual Reality has been interpreted as a kind of technology to create virtual environments and the ability to maneuver angle for and select the path of view in a dynamic scene. In this paper we examined an efficient method for Image registration and stitching of captured imaged. Two approaches are studied in this paper. First, dynamic programming is used to spot the ideal key points, match these points to merge adjacent images together, later image blending is used for smooth color transitions. In second approach, FAST and SURF detection are used to find distinct features in the images and nearest neighbor algorithm is used to match corresponding features, estimate homography with matched key points using RANSAC. The paper also covers the automatically choosing (recognizing, comparing) images to stitching method.

Optimal Associative Neighborhood Mining using Representative Attribute (대표 속성을 이용한 최적 연관 이웃 마이닝)

  • Jung Kyung-Yong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.4 s.310
    • /
    • pp.50-57
    • /
    • 2006
  • In Electronic Commerce, the latest most of the personalized recommender systems have applied to the collaborative filtering technique. This method calculates the weight of similarity among users who have a similar preference degree in order to predict and recommend the item which hits to propensity of users. In this case, we commonly use Pearson Correlation Coefficient. However, this method is feasible to calculate a correlation if only there are the items that two users evaluated a preference degree in common. Accordingly, the accuracy of prediction falls. The weight of similarity can affect not only the case which predicts the item which hits to propensity of users, but also the performance of the personalized recommender system. In this study, we verify the improvement of the prediction accuracy through an experiment after observing the rule of the weight of similarity applying Vector similarity, Entropy, Inverse user frequency, and Default voting of Information Retrieval field. The result shows that the method combining the weight of similarity using the Entropy with Default voting got the most efficient performance.

Real-Time Feature Point Matching Using Local Descriptor Derived by Zernike Moments (저니키 모멘트 기반 지역 서술자를 이용한 실시간 특징점 정합)

  • Hwang, Sun-Kyoo;Kim, Whoi-Yul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.116-123
    • /
    • 2009
  • Feature point matching, which is finding the corresponding points from two images with different viewpoint, has been used in various vision-based applications and the demand for the real-time operation of the matching is increasing these days. This paper presents a real-time feature point matching method by using a local descriptor derived by Zernike moments. From an input image, we find a set of feature points by using an existing fast corner detection algorithm and compute a local descriptor derived by Zernike moments at each feature point. The local descriptor based on Zernike moments represents the properties of the image patch around the feature points efficiently and is robust to rotation and illumination changes. In order to speed up the computation of Zernike moments, we compute the Zernike basis functions with fixed size in advance and store them in lookup tables. The initial matching results are acquired by an Approximate Nearest Neighbor (ANN) method and false matchings are eliminated by a RANSAC algorithm. In the experiments we confirmed that the proposed method matches the feature points in images with various transformations in real-time and outperforms existing methods.

An Advanced Scheme for Searching Spatial Objects and Identifying Hidden Objects (숨은 객체 식별을 위한 향상된 공간객체 탐색기법)

  • Kim, Jongwan;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1518-1524
    • /
    • 2014
  • In this paper, a new method of spatial query, which is called Surround Search (SuSe) is suggested. This method makes it possible to search for the closest spatial object of interest to the user from a query point. SuSe is differentiated from the existing spatial object query schemes, because it locates the closest spatial object of interest around the query point. While SuSe searches the surroundings, the spatial object is saved on an R-tree, and MINDIST, the distance between the query location and objects, is measured by considering an angle that the existing spatial object query methods have not previously considered. The angle between targeted-search objects is found from a query point that is hidden behind another object in order to distinguish hidden objects from them. The distinct feature of this proposed scheme is that it can search the faraway or hidden objects, in contrast to the existing method. SuSe is able to search for spatial objects more precisely, and users can be confident that this scheme will have superior performance to its predecessor.

Indoor Path Recognition Based on Wi-Fi Fingerprints

  • Donggyu Lee;Jaehyun Yoo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.2
    • /
    • pp.91-100
    • /
    • 2023
  • The existing indoor localization method using Wi-Fi fingerprinting has a high collection cost and relatively low accuracy, thus requiring integrated correction of convergence with other technologies. This paper proposes a new method that significantly reduces collection costs compared to existing methods using Wi-Fi fingerprinting. Furthermore, it does not require labeling of data at collection and can estimate pedestrian travel paths even in large indoor spaces. The proposed pedestrian movement path estimation process is as follows. Data collection is accomplished by setting up a feature area near an indoor space intersection, moving through the set feature areas, and then collecting data without labels. The collected data are processed using Kernel Linear Discriminant Analysis (KLDA) and the valley point of the Euclidean distance value between two data is obtained within the feature space of the data. We build learning data by labeling data corresponding to valley points and some nearby data by feature area numbers, and labeling data between valley points and other valley points as path data between each corresponding feature area. Finally, for testing, data are collected randomly through indoor space, KLDA is applied as previous data to build test data, the K-Nearest Neighbor (K-NN) algorithm is applied, and the path of movement of test data is estimated by applying a correction algorithm to estimate only routes that can be reached from the most recently estimated location. The estimation results verified the accuracy by comparing the true paths in indoor space with those estimated by the proposed method and achieved approximately 90.8% and 81.4% accuracy in two experimental spaces, respectively.