• Title/Summary/Keyword: k nearest neighbor method

Search Result 316, Processing Time 0.026 seconds

Development of Rotating Machine Vibration Condition Monitoring System based upon Windows NT (Windows NT 기반의 회전 기계 진동 모니터링 시스템 개발)

  • 김창구;홍성호;기석호;기창두
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.98-105
    • /
    • 2000
  • In this study, we developed rotating machine vibration condition monitoring system based upon Windows NT and DSP Board. Developed system includes signal analysis module, trend monitoring and simple diagnosis using threshold value. Trend analysis and report generation are offered with database management tool which was developed in MS-ACCESS environment. Post-processor, based upon Matlab, is developed for vibration signal analysis and fault detection using statistical pattern recognition scheme based upon Bayes discrimination rule and neural networks. Concerning to Bayes discrimination rule, the developed system contains the linear discrimination rule with common covariance matrices and the quadratic discrimination rule under different covariance matrices. Also the system contains k-nearest neighbor method to directly estimate a posterior probability of each class. The result of case studies with the data acquired from Pyung-tak LNG pump and experimental setup show that the system developed in this research is very effective and useful.

  • PDF

Research on Classification of Sitting Posture with a IMU (하나의 IMU를 이용한 앉은 자세 분류 연구)

  • Kim, Yeon-Wook;Cho, Woo-Hyeong;Jeon, Yu-Yong;Lee, Sangmin
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.11 no.3
    • /
    • pp.261-270
    • /
    • 2017
  • Bad sitting postures are known to cause for a variety of diseases or physical deformation. However, it is not easy to fit right sitting posture for long periods of time. Therefore, methods of distinguishing and inducing good sitting posture have been constantly proposed. Proposed methods were image processing, using pressure sensor attached to the chair, and using the IMU (Internal Measurement Unit). The method of using IMU has advantages of simple hardware configuration and free of various constraints in measurement. In this paper, we researched on distinguishing sitting postures with a small amount of data using just one IMU. Feature extraction method was used to find data which contribution is the least for classification. Machine learning algorithms were used to find the best position to classify and we found best machine learning algorithm. Used feature extraction method was PCA(Principal Component Analysis). Used Machine learning models were five : SVM(Support Vector Machine), KNN(K Nearest Neighbor), K-means (K-means Algorithm) GMM (Gaussian Mixture Model), and HMM (Hidden Marcov Model). As a result of research, back neck is suitable position for classification because classification rate of it was highest in every model. It was confirmed that Yaw data which is one of the IMU data has the smallest contribution to classification rate using PCA and there was no changes in classification rate after removal it. SVM, KNN are suitable for classification because their classification rate are higher than the others.

Efficient Pruning Method for Skyline Region Decision (스카이라인 영역 결정을 위한 효율적인 가지치기 기법)

  • Kim, Jin-Ho;Park, Young-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.22-27
    • /
    • 2006
  • 4단계 스카이라인 영역 결정 기법[2]은 영역 결정 시간이 객체의 개수에 비례해서 현저히 증가하기 때문에 다수의 객체를 포함하는 도메인들에 적용하기 어렵다. 이러한 문제점은 스카이라인 영역이 지배 객체 집합의 부분 집합으로 이루어지는 특성을 고려하지 않았기 때문에 발생한다. 이 논문에서는 스카이라인 영역 결정에 불필요한 객체들을 제거할 수 있는 거리 기반 가지치기 기법과 영역 결정 선분의 범위 축소 기법을 제안한다. 제안한 기법들을 R*-트리와 INN(Incremental Nearest Neighbor) 알고리즘에 적용함으로써 점진적으로 스카이라인 영역을 결정할 수 있으며 영역 결정 시간을 현저하게 감소시킬 수 있다. 제안한 기법의 성능 향상을 증명하기 위해 4단계 영역 결정 기법과의 비교 실험을 수행한다.

  • PDF

An Efficient Searching Method for Nearest Neighbor in Mobile Broadcast Environments (이동방송 환경에서의 효율적인 NN 탐색 기법)

  • Lee Myong-Soo;Lee Sang Keun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.160-162
    • /
    • 2005
  • 무선 방송 방식은 부족한 대역폭의 효율적인 활용과 채널을 듣는 모든 사용자를 지원할 수 있다는 효율성 측면에서 각광받고 있다. 위치기반 서비스 중에서도 효율적인 방송기법을 이용하기 위한 연구 및 가장 기본적인 질의 중 하나인 NN 질의를 효율적으로 수행하기 위한 연구가 이루어져 왔다. 그러나 기존의 연구된 기법들은 NN 탐색 시 하나 이상의 방송주기를 필요로 하여 긴 접근 시간을 가진다는 단점이 있다. 이러한 단점을 모바일 환경에서 비효율적으로 자원을 사용한다는 문제를 발생시킨다. 이에 따라 본 논문에서는 한층 효율적인 자원 사용을 위해서 무선 기기에서 무선 방송 채널을 통해 NN 탐색을 수행할 수 있는 새로운 기법을 제안하고자 한다. 기존의 기법들에 비해서 접근 시간과 튜닝 시간을 줄임으로써 본 논문에서는 효율적으로 자원을 사용하고자 한다. 또한, 실험을 통해 본 논문에서 제안한 기법이 기존의 기법보다. 향상된 성능을 보이는 것을 증명한다.

  • PDF

Systematic Approach for Detecting Text in Images Using Supervised Learning

  • Nguyen, Minh Hieu;Lee, GueeSang
    • International Journal of Contents
    • /
    • v.9 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • Locating text data in images automatically has been a challenging task. In this approach, we build a three stage system for text detection purpose. This system utilizes tensor voting and Completed Local Binary Pattern (CLBP) to classify text and non-text regions. While tensor voting generates the text line information, which is very useful for localizing candidate text regions, the Nearest Neighbor classifier trained on discriminative features obtained by the CLBP-based operator is used to refine the results. The whole algorithm is implemented in MATLAB and applied to all images of ICDAR 2011 Robust Reading Competition data set. Experiments show the promising performance of this method.

New Feature Selection Method for Text Categorization

  • Wang, Xingfeng;Kim, Hee-Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.53-61
    • /
    • 2017
  • The preferred feature selection methods for text classification are filter-based. In a common filter-based feature selection scheme, unique scores are assigned to features; then, these features are sorted according to their scores. The last step is to add the top-N features to the feature set. In this paper, we propose an improved global feature selection scheme wherein its last step is modified to obtain a more representative feature set. The proposed method aims to improve the classification performance of global feature selection methods by creating a feature set representing all classes almost equally. For this purpose, a local feature selection method is used in the proposed method to label features according to their discriminative power on classes; these labels are used while producing the feature sets. Experimental results obtained using the well-known 20 Newsgroups and Reuters-21578 datasets with the k-nearest neighbor algorithm and a support vector machine indicate that the proposed method improves the classification performance in terms of a widely known metric ($F_1$).

Dilution of Precision (DOP) Based Landmark Exclusion Method for Evaluating Integrity Risk of LiDAR-based Navigation Systems

  • Choi, Pil Hun;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.285-292
    • /
    • 2020
  • This paper introduces a new computational efficient Dilution of Precision (DOP)-based landmark exclusion method while ensuring the safety of the LiDAR-based navigation system that uses an innovation-based Nearest-Neighbor (NN) Data Association (DA) process. The NN DA process finds a correct landmark association hypothesis among all potential landmark permutations using Kalman filter innovation vectors. This makes the computational load increases exponentially as the number of landmarks increases. In this paper, we thus exclude landmarks by introducing DOP that quantifies the geometric distribution of landmarks as a way to minimize the loss of integrity performance that can occur by reducing landmarks. The number of landmarks to be excluded is set as the maximum number that can satisfy the integrity risk requirement. For the verification of the method, we developed a simulator that can analyze integrity risk according to the landmark number and its geometric distribution. Based on the simulation, we analyzed the relationship between DOP and integrity risk of the DA process by excluding each landmark. The results showed a tendency to minimize the loss of integrity performance when excluding landmarks with poor DOP. The developed method opens the possibility of assuring the safety risk of the Lidar-based navigation system in real-time applications by reducing a substantial amount of computational load.

An Advanced RFID Localization Algorithm Based on Region Division and Error Compensation

  • Li, Junhuai;Zhang, Guomou;Yu, Lei;Wang, Zhixiao;Zhang, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.670-691
    • /
    • 2013
  • In RSSI-based RFID(Radio Frequency IDentification) indoor localization system, the signal path loss model of each sub-region is different from others in the whole localization area due to the influence of the multi-path phenomenon and other environmental factors. Therefore, this paper divides the localization area into many sub-regions and constructs separately the signal path loss model of each sub-region. Then an improved LANDMARC method is proposed. Firstly, the deployment principle of RFID readers and tags is presented for constructing localization sub-region. Secondly, the virtual reference tags are introduced to create a virtual signal strength space with RFID readers and real reference tags in every sub-region. Lastly, k nearest neighbor (KNN) algorithm is used to locate the target object and an error compensating algorithm is proposed for correcting localization result. The results in real application show that the new method enhances the positioning accuracy to 18.2% and reduces the time cost to 30% of the original LANDMARC method without additional tags and readers.

A Study on the Related Characteristics of Discharge-Water Quality in Nakdong River (낙동강 주요지점에서 유량-수질의 관련특성에 관한 연구)

  • Cho, Hyeon-Kyeong
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.373-384
    • /
    • 2011
  • This study aims at the examination of the relative characteristics of discharge and water quality in river basins using statistical methods. For it, water quality and discharge data was collected in observed stations of Nakdong river and carried out correlation analysis, regression analysis, factor analysis and cluster analysis. And it was investigated the applicability of water quality prediction using Nearest-neighbor method. As a result, it grasped a trenditional characteristics and mutual relations between discharge an water quality data. Therefore, this results were suggested the comprehensive data and methods for a management of water quality, effective operation and policy development in Nakdong river basin.

Modeling saturated-unsaturated moisture flow in soils (포화층및 불포화층에 대한 토양수분흐름의 모델링)

  • 정상옥
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1988.07a
    • /
    • pp.85-92
    • /
    • 1988
  • A model for the transient one-dimensional moisture movement in the saturated-unsaturated zone using a finite difference method is developed. Hysteresis in the soil water retention is incorporated. The model considers layered geologic formations. Monte Carlo simulation, together with the nearest neighbor model is used. Outputs of the model include pressure head, water content, and the water table elevation. Two Monte Carlo simulations of 100 realizations each are made for a 12-day simulation period with different input values. The simulation results show that the S.D. of the outputs increases with an increase in the input, the S.D. of the log K$$. The model is applied to predict a long term water table fluctuation, and the predicted water table agress well with the observed one.

  • PDF