• Title/Summary/Keyword: k nearest neighbor QSAR

Search Result 2, Processing Time 0.069 seconds

Development of kNN QSAR Models for 3-Arylisoquinoline Antitumor Agents

  • Tropsha, Alexander;Golbraikh, Alexander;Cho, Won-Jea
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2397-2404
    • /
    • 2011
  • Variable selection k nearest neighbor QSAR modeling approach was applied to a data set of 80 3-arylisoquinolines exhibiting cytotoxicity against human lung tumor cell line (A-549). All compounds were characterized with molecular topology descriptors calculated with the MolconnZ program. Seven compounds were randomly selected from the original dataset and used as an external validation set. The remaining subset of 73 compounds was divided into multiple training (56 to 61 compounds) and test (17 to 12 compounds) sets using a chemical diversity sampling method developed in this group. Highly predictive models characterized by the leave-one out cross-validated $R^2$ ($q^2$) values greater than 0.8 for the training sets and $R^2$ values greater than 0.7 for the test sets have been obtained. The robustness of models was confirmed by the Y-randomization test: all models built using training sets with randomly shuffled activities were characterized by low $q^2{\leq}0.26$ and $R^2{\leq}0.22$ for training and test sets, respectively. Twelve best models (with the highest values of both $q^2$ and $R^2$) predicted the activities of the external validation set of seven compounds with $R^2$ ranging from 0.71 to 0.93.

Designing Hypothesis of 2-Substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl] Acetamide Analogs as Anticancer Agents: QSAR Approach

  • Bedadurge, Ajay B.;Shaikh, Anwar R.
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.744-754
    • /
    • 2013
  • Quantitative structure-activity relationship (QSAR) analysis for recently synthesized imidazole-(benz)azole and imidazole - piperazine derivatives was studied for their anticancer activities against breast (MCF-7) cell lines. The statistically significant 2D-QSAR models ($r^2=0.8901$; $q^2=0.8130$; F test = 36.4635; $r^2$ se = 0.1696; $q^2$ se = 0.12212; pred_$r^2=0.4229$; pred_$r^2$ se = 0.4606 and $r^2=0.8763$; $q^2=0.7617$; F test = 31.8737; $r^2$ se = 0.1951; $q^2$ se = 0.2708; pred_$r^2=0.4386$; pred_$r^2$ se = 0.3950) were developed using molecular design suite (VLifeMDS 4.2). The study was performed with 18 compounds (data set) using random selection and manual selection methods used for the division of the data set into training and test set. Multiple linear regression (MLR) methodology with stepwise (SW) forward-backward variable selection method was used for building the QSAR models. The results of the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-Nearest Neighbor Molecular Field Analysis) investigating the substitutional requirements for the favorable anticancer activity. The results derived may be useful in further designing novel imidazole-(benz)azole and imidazole-piperazine derivatives against breast (MCF-7) cell lines prior to synthesis.