• 제목/요약/키워드: k nearest neighbor

검색결과 650건 처리시간 0.029초

분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과 (Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price)

  • 김선웅
    • 지능정보연구
    • /
    • 제28권4호
    • /
    • pp.157-177
    • /
    • 2022
  • 투자자들은 증권회사가 제공하는 시세표인 Limit Order Book 정보를 통해 국내외 투자자들이 제출하는 주문 정보를 실시간으로 파악하면서 거래에 참여하고 있다. Limit Order Book에 실시간으로 공개되고 있는 주문 정보가 주가 예측에서 유용성이 있을까? 본 연구는 장 중 투자자들의 매수와 매도 주문이 어느 한쪽으로 쏠리면서 주문 불균형이 나타나는 경우 미래 주가 등락의 예측 변수로서 유의성이 있는지를 분석하는 것이다. 분류 알고리즘을 이용하여 주문 불균형 정보의 당일 종가 등락에 대한 예측 정확도를 높이고, 예측 결과를 이용한 데이트레이딩 전략을 제안하며 실증분석을 통해 투자 성과를 분석한다. 자료는 2004년 1월 19일부터 2022년 6월 30일까지의 4,564일 동안의 코스피200 주가지수선물 5 분 봉 주가를 분석하였다. 실증분석 결과는 다음과 같다. 첫째, 총매수 주문량과 총매도 주문량의 불균형 정도로 측정하는 주문 불균형지수와 주가는 유의적 상관성을 보인다. 둘째, 주문 불균형 정보는 당일 종가까지의 미래 주가 등락에 대해서도 유의적인 영향력이 나타났다. 셋째, 주문 불균형 정보를 이용한 당일 종가 등락의 예측 정확도는 Support Vector Machines 알고리즘이 54.1%로 가장 높게 나타났다. 넷째, 하루 중 이른 시점에서 측정한 주문 불균형지수가 늦은 시점에서 측정한 주문 불균형지수보다 예측 정확성이 더 높았다. 다섯째, 종가 등락 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 비교모형의 투자 성과보다 높게 나타났다. 여섯째, 분류 알고리즘을 이용한 투자 성과는 K-Nearest Neighbor 알고리즘을 제외하면 모두 비교모형보다 총수익 평균이 높게 나타났다. 일곱째, Logistic Regression, Random Forest, Support Vector Machines, XGBoost 알고리즘의 예측 결과를 이용한 데이트레이딩 전략의 투자 성과는 수익성과 위험성을 동시에 평가하는 샤프비율에서도 비교모형보다 높은 결과를 보여주었다. 본 연구는 Limit Order Book 정보 중 총매수 주문량과 총매도 주문량 정보의 경제적 가치가 존재함을 밝혔다는 점에서 기존의 연구와 학술적 차별점을 갖는다. 본 연구의 실증분석 결과는 시장 참여자들에게 투자 전략적 측면에서 함의가 있다고 판단된다. 향후 연구에서는 최근 활발히 연구가 진행되고 있는 딥러닝 모형 등으로의 확장을 통해 주가 예측의 정확도를 높임으로써 데이트레이딩 투자전략의 성과를 개선할 필요가 있다.

데이터 접근 패턴 은닉을 지원하는 암호화 인덱스 기반 kNN 질의처리 알고리즘 (kNN Query Processing Algorithm based on the Encrypted Index for Hiding Data Access Patterns)

  • 김형일;김형진;신영성;장재우
    • 정보과학회 논문지
    • /
    • 제43권12호
    • /
    • pp.1437-1457
    • /
    • 2016
  • 데이터베이스 아웃소싱 환경에서, 클라우드는 인증된 사용자에게 아웃소싱된 데이터베이스를 기반으로 질의 서비스를 제공한다. 그러나 금융, 의료 정보와 같은 민감한 데이터는 클라우드에 아웃소싱 되기 전에 암호화되어야 한다. 한편, kNN 질의는 다양한 분야에서 폭넓게 사용되는 대표적인 질의 타입이며, kNN 질의 결과는 사용자의 관심사 및 선호도와 밀접하게 연관된다. 따라서 데이터 보호와 질의 보호를 동시에 고려하는 kNN 질의 처리 알고리즘에 대한 연구가 진행되어 왔다. 그러나 기존 연구는 높은 연산 비용이 요구되거나, 탐색한 인덱스의 노드 및 반환된 질의 결과가 드러나기 때문에 데이터 접근 패턴이 노출되는 문제점이 존재한다. 이러한 문제를 해결하기 위해 본 논문에서는 암호화 데이터베이스 상에서의 kNN 질의처리 알고리즘을 제안한다. 제안하는 알고리즘은 데이터 보호 및 질의 보호를 지원한다. 또한, 제안하는 알고리즘은 데이터 접근 패턴을 보호하는 동시에 효율적인 질의처리를 지원한다. 이를 위해, 데이터 접근 패턴 노출 없이 데이터 필터링을 지원하는 암호화 인덱스 탐색 기법을 제안한다. 성능 분석을 통해, 제안하는 알고리즘이 기존 기법에 비해 질의처리 시간 측면에서 우수한 성능을 보임을 검증한다.

위치 검색 지도 서비스를 위한 k관심지역 검색 기법 (k-Interest Places Search Algorithm for Location Search Map Service)

  • 조성환;이경주;유기윤
    • 한국측량학회지
    • /
    • 제31권4호
    • /
    • pp.259-267
    • /
    • 2013
  • 최근 인터넷의 발달과 더불어 지리정보시스템(GIS, Geographic Information System)에 대한 인식이 저변 확대되면서 일반인들도 위치 검색 기능을 제공하는 웹GIS를 쉽게 이용할 수 있게 되었다. 현재 서비스되고 있는 모든 위치 검색 기능은 사용자가 하나의 검색어를 입력하고 그에 대한 결과를 보여주는 서비스에 한정되어 있다. 하지만 사용자의 검색 목적이 다양해짐에 따라, 여러 가지 행위를 동시에 할 수 있는 장소를 검색하는 서비스는 없었다. 예를들어, 점심을 먹은 후, 은행에서 업무를 보고, 영화 한 편을 보고자 할 때 이러한 관심 지역(POI, Point of Interest)들이 모여 있는 장소를 필요로 할 수 있다. 따라서 본 논문에서는 사용자로부터 여러 장소를 입력받아 입력된 장소가 모여 있는 곳을 검색해주는 k-IPS 기법을 제안하고자 한다. 여기서 k는 다양한 행위를 할 수 있는 관심의 개수이다. 이 방법은 최소경계사각형(MBR, Minimum Bounding Rectangle)의 계층적 트리 구조인 $R^*$-tree 색인 기법을 이용하여 공간을 분할하고, 기존 공간 Join 연산의 성능 개선을 위하여 $R^*$-tree간의 겹치는 영역 추출하는 재귀적 공간 Join 연산을 구현하였다. k-IPS 기법의 성능 평가는 159개의 다양한 검색어 집합을 구성하여 k=2,3,4,6에 대한 검색 결과를 확인하였다. 실험 결과의 약 90%에 대해서 예상한대로 k개의 검색어 장소가 모여 있는 위치를 얻을 수 있었고, k=2,3,4의 처리 시간은 0.1초 이내의 응답을 얻을 수 있었다. k-IPS 서비스를 통하여 현대인의 순차적 생활 패턴에 맞춘 검색 서비스가 가능할 것으로 판단된다.

슬통 진단용 설문지개발 및 진단 일치도 평가연구 (Development of Knee Pain Diagnosis Questionnaire and Clinical Study of Diagnostic Correspondent Rate)

  • 황지후;김유종;김은정;이참결;이은용;이승덕;김갑성
    • Journal of Acupuncture Research
    • /
    • 제29권5호
    • /
    • pp.61-74
    • /
    • 2012
  • Objectives : This study is perfomed for preparation of oriental medicine clinical guidelines for drawing up the standards of oriental medicine demonstration and diagnosis classification about the knee pain. Methods : Statistical analysis about Crane's-knee wind(鶴膝風), arthralgia syndrome(痺症), knee injury(膝傷), gout arthritis(痛風), Youk jeol poung(歷節風) classified experts' opinions about knee pain patients by Delphi method is conducted by using oriental medicine diagnosis questionnaire. The result was classified by using linear discriminant analysis(LDA), diagonal linear discriminant analysis(DLDA), diagonal quadratic discriminant analysis(DQDA), K-nearest neighbor classification(KNN), classification and regression trees(CART), support vector machines(SVM). Results : The results are summarized as follows. 1. The result analyzed by using LDA has a hit rate of 81.65% in comparison with the original diagnosis. 2. The result analyzed by using DLDA has a hit rate of 63.3% in comparison with the original diagnosis. 3. The result analyzed by using DQDA has a hit rate of 65.14% in comparison with the original diagnosis. 4. The result analyzed by using KNN has a hit rate of 74.31% in comparison with the original diagnosis. 5. The result analyzed by using CART has a hit rate of 75.23% in comparison with the original diagnosis when the test of selected 13 significant questions based on analysis of variance was performed. 6. The result analyzed by using SVM has a hit rate of 87.16% in comparison with the original diagnosis. Conclusions : Statistical analysis using oriental medicine diagnosis questionnaire on knee pain generally turned out to have a significant result.

머신 러닝을 활용한 과학 논변 구성 요소 코딩 자동화 가능성 탐색 연구 (Exploratory Research on Automating the Analysis of Scientific Argumentation Using Machine Learning)

  • 이경건;하희수;홍훈기;김희백
    • 한국과학교육학회지
    • /
    • 제38권2호
    • /
    • pp.219-234
    • /
    • 2018
  • 본 연구에서는 국내 교육학 연구에서 거의 사용되지 않던 머신 러닝 기술을 과학 교육 연구에 접목하여, 학생들의 과학 논변 활동에서 나타나는 논변의 구성 요소를 분석하는 과정을 자동화할 수 있는 가능성을 탐색해보았다. 학습 데이터로는 Toulmin이 제안하였던 틀에 따라 학생들의 과학 논변 구성 요소를 코딩한 국내 선행 문헌 18건을 수합하고 정리하여 990개의 문장을 추출하였으며, 테스트 데이터로는 실제 교실 환경에서 발화된 과학 논변 전사 데이터를 사용하여 483개의 문장을 추출하고 연구자들이 사전 코딩을 수행하였다. Python의 'KoNLPy' 패키지와 '꼬꼬마(Kkma)' 모듈을 사용한 한국어 자연어 처리(Natural Language Processing, NLP)를 통해 개별 논변을 구성하는 단어와 형태소를 분석하였으며, 연구자 2인과 국어교육 석사학위 소지자 1인의 검토 과정을 거쳤다. 총 1,473개의 문장에 대한 논변-형태소:품사 행렬을 만든 후에 다섯 가지 방법으로 머신 러닝을 수행하고 생성된 예측 모델과 연구자의 사전 코딩을 비교한 결과, 개별 문장의 형태소만을 고려하였을 때에는 k-최근접 이웃 알고리즘(KNN)이 약 54%의 일치도(${\kappa}=0.22$)를 보임으로써 가장 우수하였다. 직전 문장이 어떻게 코딩되어 있는지에 관한 정보가 주어졌을 때, k-최근접 이웃 알고리즘(KNN)이 약 55%의 일치도(${\kappa}=0.24$)를 보였으며 다른 머신 러닝 기법에서도 전반적으로 일치도가 상승하였다. 더 나아가, 본 연구의 결과는 과학 논변 활동의 분석에서 개별문장을 고려하는 단순한 방법이 어느 정도 유용함과 동시에, 담화의 맥락을 고려하는 것 또한 필요함을 데이터에 기반하여 보여주었다. 또한 머신 러닝을 통해 교실에서 한국어로 이루어진 과학 논변 활동을 분석하여 연구자와 교사들에게 유용하게 사용될 수 있는 가능성을 보여준다.

한국 전통음악 (국악)에 대한 자동 장르 분류 시스템 구현 (An Implementation of Automatic Genre Classification System for Korean Traditional Music)

  • 이강규;윤원중;박규식
    • 한국음향학회지
    • /
    • 제24권1호
    • /
    • pp.29-37
    • /
    • 2005
  • 본 논문은 한국의 전통 음악, 즉 국악 장르를 자동으로 분류하는 시스템을 제안한다. 제안된 시스템은 입력 음악의 내용기반 분석을 통하여 궁중음악, 풍류방음악, 민속성악, 민속기악, 불교음악, 무속음악 등 6가지 장르중 하나로 자동분류하여 해당 음악의 장르 결과를 보여준다. 국악 장르 분류에 사용된 내용기반 알고리즘은 크게 음악의 특징 벡터 추출 그리고 장르 분류를 위한 패턴인식 과정 2가지로 구성된다. 음악의 특징 벡터 추출은 디지탈 신호 처리기술을 이용하여 해당 음악의 spectral centroid, rolloff, flux 등 STFT (Short Time Fourier Transform) 기반의 특징 계수들과 MFCC (Mel frequency cepstral coefficient), LPC (Linear predictive coding) 등의 계수들을 구한 후 SFS (Sequential Forward Selection) 최적 특징 벡터 열을 선별하여 사용하였으며 패틴 분류 알고리즘으로는 k-NN (k -Nearest Neighbor), Gaussian, GMM (Gaussian Mixture Model), SVM (Support Vector Machine) 분류기를 사용하였다. 특히 본 연구에서는 입력 질의의 패턴 (혹은 구간) 변화에 따른 시스템의 불확실성을 개선하기 위하여 MFC (Multi Feature Clustring) 방법을 이용하여 DB를 구축하였다. 모의실험 결과 k-NN 과 SVM 분류기 모두 $97{\%}$ 이상의 장르 분류 성공률을 보였으나, SVM 이 k-NN에 비해 약 3배 이상의 빠른 분류 성능을 가지고 있음을 확인하였다.

미분진화 기반의 초단기 호우예측을 위한 특징 선택 (Feature Selection to Predict Very Short-term Heavy Rainfall Based on Differential Evolution)

  • 서재현;이용희;김용혁
    • 한국지능시스템학회논문지
    • /
    • 제22권6호
    • /
    • pp.706-714
    • /
    • 2012
  • 본 논문에서는 대한민국의 국립기상연구소에서 제공한 최근 4년간의 데이터를 훈련 데이터, 검증 데이터 및 테스트 데이터로 나누어 초단기 호우 예측을 하고자 한다. 우리는 데이터 셋을 훈련 데이터, 검증 데이터와 테스트 데이터 세 부분으로 나눴다. 데이터의 차원이 커짐에 따라 해 공간의 크기가 지수적으로 증가하여 실험의 속도가 현저히 떨어지는 문제를 피하기 위하여 72개의 특징들 중에서 주요한 특징들만을 선택하게 되었다. 예측의 정확도를 높이기 위해 미분진화 알고리즘을 사용하였고, 진화연산의 적합도 함수로 두 개의 분류기를 선택하였는데, 일반적으로 우수한 성능을 보이는 서포트 벡터 머신(SVM)과 분류 속도가 빠른 최근린법(k-NN)을 사용하였다. 또한, 실험에 사용할 데이터 가공을 위해 언더샘플링과 정규화를 하였다. 진화연산의 적합도 함수로 SVM 분류기를 사용하였을 때 실험 결과가 대체로 우수하였는데, 미분진화 알고리즘 실험은 모든 특징을 선택한 실험보다 약 5 배 정도 우수한 성능을 보였고, 유전 알고리즘을 사용한 실험보다 약 1.36 배 정도 더 우수한 성능을 보였다. 실험 속도 면에서는 미분진화 알고리즘을 사용한 실험이 유전 알고리즘을 사용한 실험보다 약 20배 이상 실험 시간이 단축되었다.

8체질 진단을 위한 전문가 시스템 개발에 관한 연구(2) (A Study for 8 Constitution Medicine Diagnosis Expert System Development(2))

  • 신용섭;박영배;박영재;김민용;이상철;오환섭
    • 대한한의진단학회지
    • /
    • 제12권2호
    • /
    • pp.107-126
    • /
    • 2008
  • Background : There was seldom study about method that diagnose 8 Constitution beside method of pulse diagnosis in 8 Constitution Medicine. Objectives : This study is to make out 8 Constitution Medicine Diagnosis Expert System Development used CBR(Case based Reasoning). Methods : First, at case base construction process we constructed case base for CBR embodiment because gathering 925 cases all to patient who constitution is verified, and second, at study model establishment process superior expert system development by purpose CBR of reasoning process dividing fundamental type CBR that spend basis data value and expert type CBR that reflect weight in basis data value accordin I II III to advice expert opinion, and third, system embodiment process explained about way to give process and weight that diagnose constitution through Nearest Neighbor Method sampling process of CBR techniques, and fourth, at system estimation process we selected superior CBR model because comparing and estimate the diagnosis rate of expert system with fundamental type system (GECBR) model and expert type I II III CBR system (AVCBR, AACBR, AGCBR) model that reflect expert opinion in fundamental type system. GECBR and AGCBR chose on superior study model. Through such 4 study process, we developed 8 constitution diagnosis expert system lastly. Results : 1. When we select GECBR that is fundamental type by reasoning system, diagnosis rate 78.91% of 8 constitution diagnosis expert system is expected, and the constitution diagnosis rate Hepatonia 90.4%, Cholecystonia 63.0%, Pancreotonia 91.1%, Gastrotonia 0%, Pulmotonia 71.2%, Colonotonia 74.4%, Renotonia 37.5%, Vesicotonia 67.1% expect. 2. When we select AGCBR that is expert type III by reasoning system, diagnosis rate 77.51% of 8 constitution diagnosis expert system is expected, and the constitution diagnosis rate Hepatonia 93.4%, Cholecystonia 58.5%, Pancreotonia 91.1%, Gastrotonia 0%, Pulmotonia 73.1%, Colonotonia 64.4%, Renotonia 41.7%, Vesicotonia 72.2% expect. Conclusion : Based on this study, 8 constitution diagnosis expert system may give help to diagnose 8 constitution, and it is going to utilize as objective estimation tool of 8 constitution diagnosis, and further study for 8 Constitution Medicine Diagnosis Expert System Development used CBR(Case based Reasoning) is needed to supplement this study.

  • PDF

이미지 데이터베이스에서 매개변수를 필요로 하지 않는 클러스터링 및 아웃라이어 검출 방법 (A Parameter-Free Approach for Clustering and Outlier Detection in Image Databases)

  • 오현교;윤석호;김상욱
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.80-91
    • /
    • 2010
  • 이미지 데이터가 증가함에 따라 효율적인 검색을 위해서 이미지 데이터를 구조화해야 할 필요성이 증가하고 있다. 이미지 데이터를 구조화하기 위한 대표적인 방법으로는 클러스터링이 있다. 그러나 기존 클러스터링 방법들은 클러스터링을 수행하기 전에 매개변수로서 클러스터의 개수를 사용자로부터 제공 받아야 되는 어려움이 있다. 본 논문에서는 클러스터의 개수를 사용자에게 제공 받지 않고 이미지 데이터를 클러스터링 하는 방안에 대해서 논의 한다. 제안하는 방안은 객체들 간의 상호 연관관계를 이용하여 매개변수 없이 데이터의 감추어진 구조나 패턴을 찾아내는 방법인 Cross-Association을 기반으로 한다. 이미지 데이터 클러스터링에 Cross-Association을 적용하기 위해서는 먼저 이미지 데이터를 그래프로 변환해야 한다. 그런 후에 생성된 그래프를 Cross-Association에 적용시키고 그 결과를 클러스터링 관점에서 해석한다. 본 논문에서는 또한 Cross-Association을 기반으로 계층적 클러스터링 하는 방법과 아웃라이어 검출 방법을 제안한다. 실험을 통해서 제안하는 방법의 우수성을 규명하고 이미지 데이터를 클러스터링 하는데 적절한 k-최근접 이웃검색에서의 k값과 더 나은 그래프 생성 방법이 무엇인지를 제시한다.

부도예측을 위한 KNN 앙상블 모형의 동시 최적화 (Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis)

  • 민성환
    • 지능정보연구
    • /
    • 제22권1호
    • /
    • pp.139-157
    • /
    • 2016
  • 앙상블 분류기란 개별 분류기보다 더 좋은 성과를 내기 위해 다수의 분류기를 결합하는 것을 의미한다. 이와 같은 앙상블 분류기는 단일 분류기의 일반화 성능을 향상시키는데 매우 유용한 것으로 알려져 있다. 랜덤 서브스페이스 앙상블 기법은 각각의 기저 분류기들을 위해 원 입력 변수 집합으로부터 랜덤하게 입력 변수 집합을 선택하며 이를 통해 기저 분류기들을 다양화 시키는 기법이다. k-최근접 이웃(KNN: k nearest neighbor)을 기저 분류기로 하는 랜덤 서브스페이스 앙상블 모형의 성과는 단일 모형의 성과를 개선시키는 데 효과적인 것으로 알려져 있으며, 이와 같은 랜덤 서브스페이스 앙상블의 성과는 각 기저 분류기를 위해 랜덤하게 선택된 입력 변수 집합과 KNN의 파라미터 k의 값이 중요한 영향을 미친다. 하지만, 단일 모형을 위한 k의 최적 선택이나 단일 모형을 위한 입력 변수 집합의 최적 선택에 관한 연구는 있었지만 KNN을 기저 분류기로 하는 앙상블 모형에서 이들의 최적화와 관련된 연구는 없는 것이 현실이다. 이에 본 연구에서는 KNN을 기저 분류기로 하는 앙상블 모형의 성과 개선을 위해 각 기저 분류기들의 k 파라미터 값과 입력 변수 집합을 동시에 최적화하는 새로운 형태의 앙상블 모형을 제안하였다. 본 논문에서 제안한 방법은 앙상블을 구성하게 될 각각의 KNN 기저 분류기들에 대해 최적의 앙상블 성과가 나올 수 있도록 각각의 기저 분류기가 사용할 파라미터 k의 값과 입력 변수를 유전자 알고리즘을 이용해 탐색하였다. 제안한 모형의 검증을 위해 국내 기업의 부도 예측 관련 데이터를 가지고 다양한 실험을 하였으며, 실험 결과 제안한 모형이 기존의 앙상블 모형보다 기저 분류기의 다양화와 예측 성과 개선에 효과적임을 알 수 있었다.