비모수적 결측치 대치법인 k-최근접 이웃(k-Nearest Neighbors; KNN) 대치법을 개선한 적응 최근접 이웃(Adaptive Nearest Neighbor; ANN) 대치법과 순차 k-최근접 이웃(Sequential k-Nearest Neighbor; SKNN) 대치법의 장점들을 결합한 순차 적응 최근접 이웃(Sequential Adaptive Nearest Neighbor; SANN) 대치법을 제안하고자 한다. 이 방법은 ANN 대치법의 장점인 자료의 국소적 특징을 반영할 뿐 아니라, SKNN 대치법과 같이 결측값 대치가 이루어진 개체를 다음 결측값을 대치할 때 사용함으로써 효율성에 개선이 있을 것으로 기대한다.
커널 기법은 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다r4]. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor(fuzzy K-NN) 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(fuzzy kernel K-NN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과와 실제 영상의 분할 결과를 보일 것이다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제12권4호
/
pp.300-307
/
2012
When the volume of data grows big, some simple tasks could become a significant concern. Nearest neighbor search is such a task which finds from a data set the k nearest data points to queries. Locality-sensitive hashing techniques have been developed for approximate but fast nearest neighbor search. This paper introduces the notion of locality-sensitive hashing and surveys the locality-sensitive hashing techniques. It categories them based on several criteria, presents their characteristics, and compares their performance.
본 논문은 (1)에 기술된 퍼지 K-nearest neighbor(NN) 알고리즘의 확장인 interval 제2종 퍼지 K-NN을 제안한다. 제안된 방법에서는, 각 패턴벡터의 멤버쉽 값들에 불확실성(Uncertainty)을 할당하는 것에 의해 interval 제2종 퍼지 멤버쉽으로의 확장을 시도한다. 이러한 확장은, K의 결정에 존재하는 불확실성은 다루고, 조정할 수 있게 한다.
현대인들이 계속 쏟아지는 정보로부터 자신에게 필요한 정보만을 제한된 시간 안에 검색하는 일은 쉬운 일이 아니다. 컴퓨터를 이용하여 제한된 시간 내에 원하는 정보를 검색하고자 하는 정보검색 분야에서는 성능을 향상시키기 위한 연구가 활발히 진행되어 오고 있다. 본 논문에서는 정보검색 시스템의 성능을 향상시키고자 퍼지 K-Nearest Neighbor에 의한 정보검색시스템(IRS-FKNN: Information Retrieval System using Fuzzy K-Nearest Neighbor)을 제안한다. 제안하는 시스템은 기존의 시스템과 비교했을 때 검색결과의 신뢰성을 높이게 되어 시스템의 성능을 향상시키게 되었다.
본 논문에서는 k-Nearest Neighbor(k-NN) 알고리즘을 최적화하기 위해 지역적으로 다른 k(고려할 neighbor의 개수)를 사용하는 새로운 방법을 제안한다. 인스턴스 공간(instance space)에서 노이즈(noise)의 분포가 지역적(local)으로 다를 경우, 각 지점에서 고려해야 할 최적의 이웃 인스턴스(neighbor)의 수는 해당 지점에서의 국부적인 노이즈 분포에 따라 다르다. 그러나 기존의 방법은 전체 인스턴스 공간에 대해 동일한 k를 사용하기 때문에 이러한 인스턴스 공간의 지역적인 특성을 고려하지 못한다. 따라서 본 논문에서는 지역적으로 분포가 다른 노이즈 문제를 해결하기 위해 인스턴스 공간을 여러 개의 부분으로 나누고, 각 부분에 최적화된 k의 값을 사용하여 kNN을 수행하는 새로운 방법인 Local-k Nearest Neighbor 알고리즘(LkNN Algorithm)을 제안한다. LkNN을 통해 생성된 k의 집합은 인스턴스 공간의 각 부분을 대표하는 값으로, 해당 지역의 인스턴스가 고려해야 할 이웃(neighbor)의 수를 결정지어준다. 제안한 알고리즘에 적합한 데이터의 도메인(domain)과 그것의 향상된 성능은 UCI ML Data Repository 데이터를 사용한 실험을 통해 검증하였다.
vp tree는 기준점(vantage point)과의 거리를 기준으로 데이터베이스 내의 자료를 색인하는 자료구조이다. 멀티미디어 자료 검색에서 비슷한 정도는 객체간의 거리를 바탕으로 비교하고, vp tree 색인 구조는 이 과정을 내포하고 있기 때문에 최근 멀티미디어 검색 연구에서 많이 사용되고 있다. 검색 방법에는 query와 가장 가까운 대상을 찾는 Nearest Neighbor Search, 또는 query와 가까운 k등까지를 검색하는 k-Nearest Neighbor Search가 있다. 본 논문에서는 Content-based retrieval에서 최근 자주 사용되는 vp tree에서 효과적인 k-NNS 방법을 제안하고, 기존의 전형적인 k-NNS 방법과의 비교 실험 결과를 보인다.
커널 함수는 데이터를 high dimension 상의 속성 공간으로 mapping함으로써 복잡한 분포를 가지는 데이터에 대하여 기존의 선형 분류 알고리즘들의 성능을 향상시킬 수 있다. 본 논문에서는 기존의 유클리디안 거리측정방법 대신에 커널 함수에 의한 속성 공간의 거리측정방법을 fuzzy K-nearest neighbor 알고리즘에 적용한 fuzzy kernel K-nearest neighbor(FKKNN) 알고리즘을 제안한다. 제시한 알고리즘은 데이터에 대한 적절한 커널 함수의 선택으로 기존 알고리즘의 성능을 향상 시킬 수 있다. 제시한 알고리즘의 타당성을 보이기 위하여 여러 데이터 집합에 대한 실험결과를 분석한다.
내용 기반 멀티미디어 정보 검색에서 유사성에 기반한 k-최근접 데이타 탐색 질의는 매우 중요한 질의이다 일반적으로 멀티미디어 데이타는 고차원 특정 벡터로 표현되기 때문에 기존의 k-최근접 탐색 알고리즘은 멀티미디어 정보 검색에 효율적이지 못하다. 따라서 이러한 응용을 위해서는 다소 근사적 검색 결과를 가져오더라도 빠른 검색 성능을 제공하는 근사 k-최근접 탐색 알고리즘이 요구된다. 이를 위해 본 논문에서는 고차원 데이타를 위한 새로운 근사 k-최근접 탐색 알고리즘을 제안한다. 아울러, 제안하는 근사 k-최근접 탐색 알고리즘을 기존의 알고리즘과 검색 성능변에서 성능 평가를 수행한다. 성능 평가 결과, 기존 알고리즘의 검색 성능을 크게 개선할 수 있었다.
In order to make up the deficiencies of the existing research results which cannot effectively deal with the nearest neighbor query based on the line segments in obstacle space, the k nearest neighbor query method of line segment in obstacle space is proposed and the STA_OLkNN algorithm under the circumstance of static obstacle data set is put forward. The query process is divided into two stages, including the filtering process and refining process. In the filtration process, according to the properties of the line segment Voronoi diagram, the corresponding pruning rules are proposed and the filtering algorithm is presented. In the refining process, according to the relationship of the position between the line segments, the corresponding distance expression method is put forward and the final result is obtained by comparing the distance. Theoretical research and experimental results show that the proposed algorithm can effectively deal with the problem of k nearest neighbor query of the line segment in the obstacle environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.