• Title/Summary/Keyword: jute fiber-reinforced concrete

Search Result 7, Processing Time 0.025 seconds

Mechanical properties of natural fiber-reinforced normal strength and high-fluidity concretes

  • Kim, Joo-Seok;Lee, Hyoung-Ju;Choi, Yeol
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.531-539
    • /
    • 2013
  • An experimental investigation of mechanical properties of jute fiber-reinforced concrete (JFRC) has been reported for making a suitable construction material in terms of fiber reinforcement. Two jute fiber reinforced concretes, called jute fiber reinforced normal strength concrete (JFRNSC) and jute fiber-reinforced high-fluidity concrete (JFRHFC), were tested in compression, flexure and splitting tension. Compressive, flexural and splitting tensile strengths of specimens were investigated to four levels of jute fiber contents by volume fraction. From the test results, Jute fiber can be successfully used for normal strength concrete (NSC) and high-fluidity concrete (HFC). Particularly, HFC with jute fibers shows relatively higher improvement of strength property than that of normal strength concrete.

Mechanical Properties and Impact Resistance of Hybrid Fiber Reinforced Concrete with Type of Reinforcing Fibers for Precast Concrete (하이브리드섬유보강 프리캐스트 콘크리트의 보강섬유 종류에 따른 역학적 특성 및 충격저항성)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.29-35
    • /
    • 2013
  • The objective of the current study is to evaluate the effects depending on the types of reinforcing fibers being influential in view of mechanical properties and impact resistance of hybrid fiber reinforced concrete (HFRC) for applications to precast concrete structure. Hybrid fibers applied therefor were three types such as PP/MSF (polypropylene fiber+macro synthetic fiber), PVA/MAF (polyvinyl alcohol fiber+MSF) and JUTE/MSF (natural jute fiber+MSF), where the volume fraction of PP, PVA and natural jute was applied with 0.2 %, respectively, while based on 0.05 % volume fraction of MSF. The HFRC was tested for slump, compressive strength, flexural strength and impact resistance. The test result demonstrated that mixture of such hybrid fibers improve compressive strength, flexural strength and impact resistance of concrete. Moreover, it was found that HFRCs to which hydrophilic fibers, i.e. PVA/MSF and JUTE/MSF, were mixed show more improved features that HFRC to which non-hydrophilic fiber, i.e. PP/MSF was mixed. Meanwhile, the finding that PVA/MSF HFRC exhibited better performance than JUTE/MSF HFRC was attributed from the former having higher aspect ratio than that of the latter.

Void Ratio, Compressive Strength and Freezing and Thawing Resistance of Natural Jute Fiber Reinforced Non-Sintering Inorganic Binder Porous Concrete (자연마섬유보강 비소성 무기결합재 다공성 콘크리트의 공극률, 압축강도 및 동결융해저항성 평가)

  • Kim, Hwang Hee;Kim, Chun Soo;Jeon, Ji Hong;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.67-73
    • /
    • 2015
  • This study evaluated the effects of fibers on the void ratio, compressive strength and repeated freezing and thawing resistance of porous vegetation concrete with binder type (non-sintering inorganic binder and blast furnace slag cement) and natural jute fiber volume fraction (0.0 %, 0.1 % and 0.2 %). The natural jute fiber volume fraction affected the void ratio, compressive strength and repeated freezing and thawing resistance. Added of natural jute fiber resulted in improved properties of the void ratio, compressive strength and freezing and thawing resistance. Also, the both compressive strength and freezing and thawing resistance increased with natural jute fiber volume fraction up to 0.1 % and then decreased with fiber volume fraction at 0.2 %.

Performance Evaluation of Natural Jute Fiber Reinforced Recycled Coarse Aggregate Concrete Using Response Surface Method (반응표면 분석법을 이용한 천연마섬유보강 순환굵은골재 콘크리트의 성능 평가)

  • Jeon, Ji Hong;Kim, Hwang Hee;Kim, Chun Soo;Yoo, Sung Yeol;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.21-28
    • /
    • 2014
  • In this study, evaluated ware the strength and durability of the vegetated water purification channel concrete to which recycled aggregates, hawang-toh and jute were applied. Box-Behnken method of response surface analysis in statistics was applied to the experimental design. Experimental variables are as follows, recycled coarse aggregates, hawang-toh, blast-furnace slag and jute fiber. In the experiment, conducted were the tests of compressive strength, chloride ion penetration, abrasion resistance and impact resistance the replacement rate effects of the recycled aggregates, blast-furnace slag and hwang-toh on the performance of vegetated water purification channel concrete were analyzed by using the response surface analysis method on the basis of the experimental results. In addition, an optimum mixing ratio of vegetated water purification channel concrete was determined by using the experimental results. The optimum mixing ratio was determined to be in 10.0% recycled coarse aggregates, 60.0% blast-furnace slag, 10.1% hwang-toh and 0.16% jute fiber. The compressive strength, chloride ion penetration, abrasion rate, and impact number of fracture test results of the optimum mixing ratio were 24.1 MPa, 999 coulombs, 10.30 g/mm3, and 20 number, respectively.

Evaluation of the Basic Properties of Concrete with Types of Cellulose Fibers (셀룰로오스 섬유 종류에 따른 콘크리트의 기초 물성 평가에 관한 연구)

  • Park, Yong-Kyu;Lee, Joo-Hun;Jeon, In-Ki;Kim, Hyun-Woo;Yoon, Ki-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.5
    • /
    • pp.419-425
    • /
    • 2011
  • Topping concrete that is not reinforced with rebar to prevent poor tensile performance is vulnerable to cracking. In this study, jute, which is known to be an excellent natural fiber material for strengthening concrete performance, was compared with other cellulose fibers in terms of its capacity to reduce the cracking of concrete. As a result, it was found that compared with concrete using other fibers, concrete using jute fiber showed more than a 50 % reduction of plastic shrinkage crack resistance with the contents of 0.9 kg/$m^3$ and 1.2 kg/$m^3$ for. For impact strength tests, the final destruction of WF and PULP fibers took up to 5 times the number of falls, while jute has 10-18 circuitry, showing excellent ductility properties.

Research for Performance Evaluation of Crack Reduction in Fiver Reinforced Concrete with Jutes (황마 섬유를 이용한 섬유 보강 콘크리트의 균열 저감 성능 평가에 관한 연구)

  • Park, Yong-Kyu;Lee, Joo-Hun;Jeon, In-Ki;Kim, Dea-Young;Yoon, Gi-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2010.05b
    • /
    • pp.53-56
    • /
    • 2010
  • In this study, three kinds of cellulose fibers to crack reduction performance were evaluated and the results are as follows. Plastic shrinkage cracking is evaluated by the relative crack area, at all levels between $0.9kg/m^3$ and $1.2kg/m^3$, except for UF0.9% of upto50% showed are duction compared with Plain. In according to recommended amount of fiber in each area of the crack HF0.9>CEL1.2>UF0.6 effect of the order was more effective. While the impact strength of UF and CEL fibers until the final destruction are about five times the number of falls, HF fiber count drop was 10-18 time.

  • PDF

An Experimental Study on the Engineering Properties of Fiber Reinforced Concrete using Kenaf Fibers (양마섬유를 혼입한 콘크리트의 공학적 특성에 관한 실험적 연구)

  • Kwon, Yeong-Ho;Jun, Woo-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • This study is to examine experimentally on the engineering properties of fiber reinforced concrete using kenaf(KN) fiber and another organic fibers for comparing test, and propose the usable method of KN fiber as an natural fiber in the concrete industry. It is to select 4 contents(0, 0.3, 0.6 and $0.9kg/m^3$) of KN fiber and 4 organic fibers (Jute, Cellulose, Polypropylene and Nylon). For this study, it is to perform various tests including slump, air content, plastic and drying shrinkage, flexural and tensile strength, carbonation depth for the fiber reinforced concrete according to contents of KN fiber and 4 organic fibers. The results of this study are as follows : In case of KN fiber contents $0.6kg/m^3$, it shows the effective results from increasing concrete strength including flexural and tensile, from decreasing plastic and drying shrinkage, carbonation depth. Also KN fiber is confirmed having excellent performances by comparing with test results of another organic fibers as same contents $0.6kg/m^3$. Therefore, considering concrete test results, cost and environment, KN fiber is proposed as the optimum contents in the range of $0.6kg/m^3$ and an effective fiber materials, and needs to keep up these study on the site application.