• Title/Summary/Keyword: jump model

Search Result 201, Processing Time 0.026 seconds

Numerical Analysis and Simulation for the Pricing of Bond on Term-Structure Interest Rate model with Jump (점프 항을 포함하는 이자율 기간구조 모형의 채권 가격결정을 위한 수치적 분석 및 시뮬레이션)

  • Kisoeb Park
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.93-99
    • /
    • 2024
  • In this paper, we derive the Partial Differential Bond Price Equation (PDBPE) by using Ito's Lemma to determine the pricing of bond on term-structure of interest rate (TSIR) model with jump. From PDBPE, the Maclaurin series (MS) and the moment-generating function (MGF) for the exponential function are used to obtain a numerical solution (NS) of the bond prices. And an algorithm for determining bond prices using Monte Carlo Simulation (MCS) techniques is proposed, and the pricing of bond is determined through the simulation process. Comparing the results of the implementation of the above two pricing methods, the relative error (RE) is obtained, which means the ratio of NS and MCS. From the results, we can confirm that the RE is less than around 2.2%, which means that the pricing of bond can be predicted very accurately using the proposed algorithms as well as numerical analysis. Moreover, it was confirmed that the bond price obtained using the MS has a relatively smaller error than the pricing of bond obtained by using the MGF.

Three-dimensional effective properties of layered composites with imperfect interfaces

  • Sertse, Hamsasew;Yu, Wenbin
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.6
    • /
    • pp.639-650
    • /
    • 2017
  • The objective of this paper is to obtain three-dimensional (3D) effective properties for layered composites with imperfect interfaces using mechanics of structure genome. The imperfect interface is modeled using linear traction-displacement model that allows small infinitesimal displacement jump across the interface. The predictions obtained from the current analysis are compared with the 3D finite element analysis (FEA). In this study, it is found that the present model shows excellent agreement with the results obtained using 3D FEA by employing periodic boundary conditions. The prediction also reveals that in-plane longitudinal and shear moduli, and all Poisson's ratios are observed to be not affected by the interfacial stiffness while the predictions of transverse longitudinal and shear moduli are significantly influenced by interfacial stiffness.

Theoretical and Experimental Studies on the Kinetics of Cation Redistribution Processes in Complex Oxides

  • Shi, Jianmin;Becker, Klaus-Dieter
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The kinetics of cation reequilibration have been studied theoretically and experimentally in complex oxides after an external perturbation of equilibrium by temperature jumps. A general kinetic model for cation redistribution amongst non-equivalent sites in complex oxides is derived based on a local homogeneous point defect mechanism involving cation vacancies. Temperature-jump optical relaxation spectroscopy has been established to investigate cation kinetic processes in spinels and olivines. The kinetic model satisfactorily describes the experimental absorbance relaxation kinetics in cobalt containing olivines and in nickel containing spinels. It is found that the kinetics of cation redistribution in complex oxides shows a strong temperature- and composition-dependence. Activation energies for cation redistribution in Co-Mg olivines are found to range between 200 and 220 kJ/mol whereas an energy barrier of about 230 kJ/mol is observed in the case of nickel gallate spinel.

Modelling and Analysis of a Vibrating System Incorporating a Viscoelastic Damper (비선형 점탄성 댐퍼를 포함한 진동시스템의 모델링 및 해석)

  • Yang, Seong-Young;Chang, Seo-Il;Kim, Sang-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.449-454
    • /
    • 2000
  • A three-parameter model of viscoelastic damper, which has a non-linear spring as an element is incorporated into an oscillator. The behavior of the damper model shows non-linear hysteresis curves which is qualitatively similar to those of real viscoelastic materials. The motion is governed by three-dimensional non-linear dynamical system of equations. The harmonic balance method is applied to get analytic solutions of the system. The frequency-response curves show that multiple solutions co-exist and that the jump phenomena can occur. In addition, it is shown that separate solution branch exists and that it can merge with the primary response curve. Saddle-node bifurcation sets explain the occurences of such non-linear phenomena. A direct time integration of the original equation of motion validifies the use of the harmonic balance method to this sort of problem.

  • PDF

Testing for a multiple change point residual variance in regression model (잔차 분산을 이용한 선형회귀모형의 다중전환점 검정)

  • Lee, In-Suk;Kim, Jong-Tae;Lee, Kum-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.27-40
    • /
    • 2001
  • The purpose of this study is to test a multiple change point in the regression model with the passage of time, using the estimated residual variance figure suggested by Gasser, Sroka and Jennen - Steinmez (GSJS). As a result of the simulation, it is showed that there is a jump change of the estimated residual variance figure at that time of change point. The way to analyse a intuitive multiple change point through graphics is more effective and accurate than any other existing ways.

  • PDF

Combustion Instability modeling - 1D approach (연소불안정 모델링 - 1D 접근법 기반)

  • Kim, Daesik;Yoon, Myunggon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.65-67
    • /
    • 2017
  • Various combustion modeling approaches have been developed and verified in a combustion system such as rockets, gas turbines, and so on. This study introduces basic theory and recent research activities on 1D network model where a system is divided into a series of acoustic element and mass/momemtum/energy conservations are applied in the component. Each component is connected to the neighboring ones with proper jump conditions. Flame transfer function and acoustic transfer function are determined and effects of the each function on the system instability is investigated.

  • PDF

Two-fluid model of the tangential plasmapause

  • Seough, Jung-Joon;Kim, Khan-Hyuk;Yoon, Peter H.;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.41.1-41.1
    • /
    • 2010
  • A bipolar magnetic field perturbation in the meridional plane was observed when the Polar spacecraft crossed the plasmapause near the midnight, which was identified by a clear jump in density and temperature, from the plasmasheet to the plasmasphere. The bipolar variation shows a negative-then-positive polarity. To examine the bipolar magnetic field perturbation at the plasmapause, we assume one-dimensional model with physical quantities varying along a direction normal to the plasmapause and employ two-fluid approach for the tangential plasmapause. That is, the magnetic fields on both sides are parallel. Considering Ampere's law and pressure balance relation, we have a perturbed magnetic field, which is consistent with the observation at the plasmapause.

  • PDF

Finite Element Analysis of Gradually and Rapidly Varied Unsteady Flow in Open Channel : II. Applications (개수로내의 점변 및 급변 부정류에 대한 유한요소해석 : II. 적용예)

  • Han, Geon-Yeon;Park, Jae-Hong;Lee, Eul-Rae
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.35-44
    • /
    • 1997
  • Petrov-Galerkin finite element model for analyzing dynamic wave equation is applied to gradually and rapidly varied unsteady flow. The model in verified by applying to hydraulic jump, nonlinear disturbance propagation in frictionless horizontal channel and dam-break analysis. It shows stable and accurate results compared with analytical solutions for various cases. The model in applied to a surge propagation in a frictionless horizontal channel. Three-dimensional water surface profiles show that the computed result converges to the analytical one with sharp discontinuity. The model is also applied to the Taehaw River to analyze unsteady floodwave propagation. The computed results have good agreements with those of DWOPER model in terms of discharge and stage hydrographs.

  • PDF

A study on improving valve train performance by a dynamic model analysis (동적모델 해석에 의한 밸브기구 성능개선에 관한 연구)

  • 전혁수;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.837-844
    • /
    • 1986
  • Valve motion is one of the most important factors which affect on engine noise and efficiency. Since engine valve train is characterized as a spring-mass system, its dynamic response should be analyzed for varing operation RPM range. In this paper, a OHV type valve train motion was studied by dynamic model analysis. A five degrees of freedom model was set up and simulated for different operating conditions. Also in order to varify the usefulness of the model, the valve displacement and the pushrod force were directly measured for varying RPMs and compared with the simulation results. Then sensitivity analysis was done with the five degrees of freedom model in order to suggest for valve train design change.

NUCLIDE SEPARATION MODELING THROUGH REVERSE OSMOSIS MEMBRANES IN RADIOACTIVE LIQUID WASTE

  • LEE, BYUNG-SIK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.859-866
    • /
    • 2015
  • The aim of this work is to investigate the transport mechanism of radioactive nuclides through the reverse osmosis (RO) membrane and to estimate its effectiveness for nuclide separation from radioactive liquid waste. An analytical model is developed to simulate the RO separation, and a series of experiments are set up to confirm its estimated separation behavior. The model is based on the extended Nernst-Plank equation, which handles the convective flux, diffusive flux, and electromigration flux under electroneutrality and zero electric current conditions. The distribution coefficient which arises due to ion interactions with the membrane material and the electric potential jump at the membrane interface are included as boundary conditions in solving the equation. A high Peclet approximation is adopted to simplify the calculation, but the effect of concentration polarization is included for a more accurate prediction of separation. Cobalt and cesium are specifically selected for the experiments in order to check the separation mechanism from liquid waste composed of various radioactive nuclides and nonradioactive substances, and the results are compared with the estimated cobalt and cesium rejections of the RO membrane using the model. Experimental and calculated results are shown to be in excellent agreement. The proposed model will be very useful for the prediction of separation behavior of various radioactive nuclides by the RO membrane.