• Title/Summary/Keyword: joint transmission (JT)

Search Result 3, Processing Time 0.019 seconds

Analysis of Call Admission Control for Joint Transmission-Based LTE-Advanced Systems (Joint Transmission 기반의 LTE-Advanced 시스템에 대한 호 수락 제어의 성능 분석)

  • Kim, Seung-Yeon;Lee, Hyong-Yoo;Ryu, Seung-Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.7
    • /
    • pp.535-542
    • /
    • 2013
  • Coordinated multi-point transmission (CoMP) is considered to be a promising technique to improve the throughput for LTE-Advanced systems. One important approach for CoMP is Joint Transmission (JT). However, the analytical model of JT has not been fully studied, as user equipments (UEs) receiving the desired signals from an adjacent base station (BS) as well as serving BS, or only serving BS were not distinguished. We derive a new analytical model to describe the call admission control in JT based systems. The performance measures of interest are the call blocking probability, and resource utilization. Furthermore, we compare the performance of JT-based systems and non-JT- based systems. The analytical results are in reasonable agreement with the simulation results.

Codebook Design and Centralized Scheduling for Joint Transmission SDMA with Limited Feedback (제한된 피드백을 사용하는 결합 전송 공간 분할 다중 접속 기술을 위한 코드북 설계와 집중 스케줄링)

  • Mun, Cheol
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1180-1187
    • /
    • 2012
  • In this paper, joint transmission space division multiple access(JT-SDMA) scheme is proposed to mitigate inter-cell interference(ICI) in cooperative wireless communications system with limited feedback. We propose a systematic design method for a codebook consisting of a finite number of unitary matrices suitable for network multiple-input multiple-output( MIMO) channel characteristics. A centralized cluster scheduling scheme is proposed to both mitigate ICI and maximizes multiuser diversity gain with limited feedback. It is shown that the proposed JT-SDMA scheme outperforms a existing coordinated SDMA scheme even in wireless network environments where sufficient multiuser diversity order can not be provided through efficient ICI mitigation.

No Blind Spot: Network Coverage Enhancement Through Joint Cooperation and Frequency Reuse

  • Zhong, Yi;Qiao, Pengcheng;Zhang, Wenyi;Zheng, Fu-chun
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.773-783
    • /
    • 2016
  • Both coordinated multi-point transmission and frequency reuse are effective approaches to mitigate inter-cell interference and improve network coverage. The motivation of this work is to explore the manner to effectively utilize the spectrum resource by reasonably combining cooperation and frequency reuse. The $Mat{\acute{e}}rn$ cluster process, which is appropriate to model networks with hot spots, is used to model the spatial distribution of base stations. Two cooperative mechanisms, coherent and non-coherent joint transmission (JT), are analyzed and compared. We also evaluate the effect of multiple antennas and imperfect channel state information. The simulation reveals that the proposed approach to combine cooperation and frequency reuse is effective to improve the network coverage for users located at both the center and the boundary of the cooperative region.