• Title/Summary/Keyword: joint modelling

Search Result 138, Processing Time 0.03 seconds

Low-Frequency Vibration Analysis of a Center Pillar-to-Roof Rail Joint : Modelling Technique and Problems (센터 필라-루프 레일 조인트의 저진동 해석 : 모델링 기법과 문제점)

  • 김윤영;강정훈;송상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • The modelling techniques of a center pillar-to-roof rail joint for low frequency vibration analysis are examined and some fundamental problems are addressed. To develop a simplified beam-spring model of the joint, the present work is focused on 1) practical shell modelling techniques and 2) joint spring stiffness estimation methods a practical model-updating method to match the calculated natural frequencies to the experimentally determine ones is proposed, particularly focusing on spot welding modelling. In joint spring modelling, the results from the model with one joint spring are compared with those from the model with three coupled springs. Finally, some fundamental problems in beam-spring modelling are addressed.

  • PDF

A Study on Dynamic Modelling of Joints in Plate Structure (평판구조 결합부의 동적 모델링에 관한 연구)

  • 이장무;이재운;성명호
    • Journal of KSNVE
    • /
    • v.2 no.1
    • /
    • pp.61-66
    • /
    • 1992
  • In general, structures have various joints such as bonded joint, bolted joint, bearing joint and welded joint. Dynamic modelling of such joints has been the current topic of interest. In this study, the dynamic modelling of plate structures with bonded joint was investigated by using modal testing, sensitivity analysis and condensation-inverse condensation method of FEM. A proper modelling procedure was proposed and the validity was verified.

  • PDF

Model Checking for Joint Modelling of Mean and Dispersion (평균과 산포의 동시 모형화에 대한 모형검토)

  • Ha, Il-Do;Lee, Woo-Dong;Cho, Geon-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.8 no.2
    • /
    • pp.195-209
    • /
    • 1997
  • The joint modelling of mean and dispersion in quasi-likelihood models which greatly extend the scope of generalized linear models, is required in case that the dispersion parameter, the variance component of response variables, is not constant but changes by depending on any covariates. In this paper, by using statistical package GENSTAT(release 5.3.2, 1996) which makes a easily analyze real data through this joint modelling, we mention necessities that must consider this joint modelling rather than existing mean models through model checking based on graphic methods for esterase assay data introduced by Carrol and Ruppert(1987, pp.46-47), and then study methods finding reasonable joint model of mean and dispersion for this data.

  • PDF

Semi-Rigid connections in steel structures: State-of-the-Art report on modelling, analysis and design

  • Celik, Huseyin Kursat;Sakar, Gokhan
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • In the structural analysis of steel frames, joints are generally considered as rigid or hinged considering their moment transfer ability. However, the first studies conducted with the beginning of the 20th century showed that the joints do not actually fit these two definitions. In reality, a joint behaves between these two extreme points and is called semi-rigid. Including the actual state of the joint in the structural analysis provides significant economic advantages, so the subject is an intense field of study today. However, it does not find enough application area in practice. For this reason, a large-scale literature published from the first studies on the subject to the present has been examined within the scope of the study. Three important points have been identified in order to examine a joint realistically; modelling the load-displacement relationship, performing the structural analysis and how to design. Joint modelling methods were grouped under 7 main headings as analytical, empirical, mechanical, numerical, informational, hybrid and experimental. In addition to the moment-rotation, other important external load effects like axial force, shear and torsion were considered. Various evaluations were made to expand the practical application area of semi-rigid connections by examining analysis methods and design approaches. Dynamic behaviour was also included in the study, and besides column-beam connections, other important connection types such as beam-beam, column-beam-cross, base connection were also examined in this paper.

Effects of sheds and cemented joints on seismic modelling of cylindrical porcelain electrical equipment in substations

  • Li, Sheng;Tsang, Hing-Ho;Cheng, Yongfeng;Lu, Zhicheng
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.55-65
    • /
    • 2017
  • Earthquake resilience of substations is essential for reliable and sustainable service of electrical grids. The majority of substation equipment consists of cylindrical porcelain components, which are vulnerable to earthquake shakings due to the brittleness of porcelain material. Failure of porcelain equipment has been repeatedly observed in recent earthquakes. Hence, proper seismic modelling of porcelain equipment is important for various limit state checks in both product manufacturing stage and detailed substation design stage. Sheds on porcelain core and cemented joint between porcelain component and metal cap have significant effects on the dynamic properties of the equipment, however, such effects have not been adequately parameterized in existing design guidelines. This paper addresses this critical issue by developing a method for taking these two effects into account in seismic modelling based on numerical and analytical approaches. Equations for estimating the effects of sheds and cemented joint on flexural stiffness are derived, respectively, by regression analyses based on the results of 12 pieces of full-scale equipment in 500kV class or higher. The proposed modelling technique has further been validated by shaking table tests.

Modelling of shear deformation and bond slip in reinforced concrete joints

  • Biddah, Ashraf;Ghobarah, A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.4
    • /
    • pp.413-432
    • /
    • 1999
  • A macro-element model is developed to account for shear deformation and bond slip of reinforcement bars in the beam-column joint region of reinforced concrete structures. The joint region is idealized by two springs in series, one representing shear deformation and the other representing bond slip. The softened truss model theory is adopted to establish the shear force-shear deformation relationship and to determine the shear capacity of the joint. A detailed model for the bond slip of the reinforcing bars at the beam-column interface is presented. The proposed macro-element model of the joint is validated using available experimental data on beam-column connections representing exterior joints in ductile and nonductile frames.

Modelling of flange-stud-slab interactions and numerical study on bottom-flange-bolted composite-beam connections

  • Xiaoxiang Wang;Yujie Yu;Lizhong Jiang;Zhiwu Yu
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.203-216
    • /
    • 2023
  • The composite beam connections often encountered fracture failure in the welded bottom flange joint, and a bottom flange bolted connection has been proposed to increase the deformation ability of the bottom flange joint. The seismic performance of the bottom flange bolted composite beam connection was suffered from both the composite action of concrete slab and the asymmetric load transfer mechanisms between top and bottom beam flange joints. Thus, this paper presents a comprehensive numerical study on the working mechanism of the bottom flange bolted composite beam connections. Three available modelling methods and a new modelling method on the flange-stud-slab interactions were compared. The efficient numerical modeling method was selected and then applied to the parametric study. The influence of the composite slab, the bottom flange bolts, the shear composite ratio and the web hole shape on the seismic performance of the bottom flange bolted composite beam connections were investigated. A hogging strength calculation method was then proposed based on numerical results.

Regression Diagnostics on Joint Modelling of Mean and Dispersion (평균과 분산의 동시모형에 따른 회귀진단법에 관한 연구)

  • 강위창;이영조;송문섭
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.2
    • /
    • pp.407-414
    • /
    • 2000
  • Carroll and Ruppert(1988) analyzed the esterase assay data with regression model based on quasi-likelihood. Jung and Lee(1997) introduced a goodness-of-fit test for testing the adequacy of the quasi-likelihood and claimed that there is no gross inadequacy with the model because their test was not rejected. However, Lee and Xelder(199S)'s residual plots revealed that the model did not sufficiently reflect the increase of the variance with that of the mean. In this paper, we re-analyze the esterase assay data with the joint modelling of mean and dispersion in Lee and l\elder(1998) and evaluate the validity of the fitted model by applying the residual plots. And it is illustrated that Lee and Nelder(199S)'s restricted likelihood is more efficient in goodness-of-fit test for the dispersion model.

  • PDF

Comparison of Modelling Characteristics of Distinct Element Analysis Based on Implicit and Explicit Algorithm (Implicit 및 explicit 알고리즘에 기초한 개별요소 수치해석 방법의 모델 링 특성 비교 연구)

  • 류창하
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.163-170
    • /
    • 2000
  • The distinct element method has been effectively applied to the analysis of stability and behavior of jointed rock masses. In this paper the modelling characteristics of different types of distinct element model were investigated. Arch tunnel examples were chosen to compare the calculation results of two computer codes, NURBM and CBLOCK, where the former is based on implicit algorithm, and the other on explicit one. CBLOCK calculations show that joint properties are very important parameters in the stability analysis and that the joint stiffness ratio associated with joint configuration could be used as an indicator, whereas NURBM differ from that. Some other disagreements were also identified.

  • PDF

Comparison of Modelling Characteristics of Distinct Element Analysis Based on Implicit and Explicit Algorithm (Implicit 및 explicit 알고리즘에 기초한 개별요소 수치해석 방법의 모델링 특성 비교 연구)

  • 류창하
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.410-417
    • /
    • 2000
  • The distinct element method has been effectively applied to the analysis of stability and behavior of jointed rock masses. In this paper the modelling characteristics of different types of distinct element model were investigated. Arch tunnel examples were chosen to compare the calculation results of two computer codes, NURBM and CBLOCK, where the former is based on implicit algorithm, and the other on explicit one. CBLOCK calculations show that joint properties are very important parameters in the stability analysis and that the joint stiffness ratio associated with joint configuration could be used as an indicator, whereas NURBM differ from that. Some other disagreements were also identified.

  • PDF