• 제목/요약/키워드: joint edges

검색결과 35건 처리시간 0.024초

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

응력특이성을 고려한 접착이음의 강도평가 방법 (Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints)

  • 정남용
    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

Characteristics of Magnetic Resonance Arthrography Findings in Traumatic Posterosuperior Rotator Cuff Tears

  • Cho, Yung-Min;Kim, Sung-Jae;Oh, Jin-Cheol;Chun, Yong-Min
    • Clinics in Shoulder and Elbow
    • /
    • 제18권4호
    • /
    • pp.211-216
    • /
    • 2015
  • Background: Few studies have investigated magnetic resonance (MR) characteristics of traumatic posterosuperior rotator cuff tears involving the supraspinatus and infraspinatus. We hypothesized that traumatic rotator cuff tears may have MR characteristics distinguishable from those of non-traumatic tears. Methods: Preoperative MR arthrography and intraoperative tear size measurements were compared in 302 patients who underwent MR arthrography and subsequent arthroscopic rotator cuff repairs for traumatic (group T, 61 patients) or non-traumatic (group NT, 241 patients) tears. The inclusion criteria for both groups were posterosuperior full-thickness rotator cuff tear and age between 40 and 60 years. For group T, traumas were limited to accidental falls or slips, or sports injuries, motor vehicle accidents; injuries were associated with acute onset of pain followed by functional shoulder impairment; and time between injury and magnetic resonance imaging (MRI) was 6 weeks or less. Results: In group T, 72.1% of shoulders (44 patients) had tendon tears with blunt edges while 27.9% of shoulders (17 patients) had tears with tapering edges. In contrast, 21.2% of patients in group NT (51 patients) had blunt-edge tears, while 78.8% (190 patients) of tears had tapering edges. These results were statistically significant (p<0.001) and estimated odds ratio was 9.6. The size of tear did not vary significantly between groups. Conclusions: We found no exclusive MR characteristic to define traumatic tears. However, oblique coronal MRI of traumatic tears showed a significant tendency for abrupt and rough torn tendon edges and relatively consistent tendon thicknesses (without lateral tapering) compared to non-traumatic cuff tears.

픽셀 기반 Joint BDCP와 계층적 양방향 필터를 적용한 단일 영상 기반 안개 제거 기법 (Single Image Haze Removal Technique via Pixel-based Joint BDCP and Hierarchical Bilateral Filter)

  • 오원근;김종호
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.257-264
    • /
    • 2019
  • 본 논문에서는 픽셀 기반 joint BDCP (bright and dark channel prior)와 계층적 양방향 필터를 적용하여 저 복잡도를 갖는 단일 영상 기반 안개 제거 기법을 제안한다. 픽셀 기반 joint BDCP는 기존의 패치 기반 DCP에 비해 연산량을 감소시키고, 픽셀 단위의 안개값 예측을 가능하게 하여 전달량 추정의 정확성을 높인다. 또한 에지를 보존하면서 평탄화 성능이 우수한 양방향 필터를 사용하여 전달량을 정련함으로써 후광 효과(halo effect)를 줄이고, 에지 성분에 대한 계층적 적용을 통해 반복 적용에 의한 연산량의 증가를 방지한다. 안개 성분이 포함된 다양한 영상에 대해 수행한 실험 결과는 제안하는 기법이 기존의 기법에 비해 우수한 안개 제거 성능을 보이면서 저 복잡도로 실행되어 다양한 분야에 응용될 수 있음을 나타낸다.

세라믹/금속접합재의 고온피로에 따른 접합계면의 응력분포 (Stress distribution of near the interface on high temperature fatigue in ceramic/metal bonded joints)

  • 박영철;허선철;윤두표;김광영
    • 한국해양공학회지
    • /
    • 제10권2호
    • /
    • pp.106-119
    • /
    • 1996
  • The ceramic has various high mechanical properties such as heat, abrasion, corrosion resistance and high temperature strength compared with metal. It also has low speciffic weight, low thermal expansibillity, low thermal conductivity. However, it could not be used as structural material since it is brittle and difficult for the machining. Therefore, there have been many researches to attempt to join ceramic with metal which is full of ductillity in order to compensate the weakness of ceramic.The problem is that residual stress develops around the joint area while the ceramic/metal joint material is cooled from high joining temperature to room temperature due to remarkable difference of thermal expansion coefficients between ceramic and metal. Especially, the residual stress at both edges of the specimen reduces the strngth of joint to a large amount by forming a singular stress field. In this study, two dimensional finite element method is attempted for the thermal elastic analysis. The joint residual stress of ceramic/metal developed in the cooling process is investigated and the change of joint residual stress resulted from the repetitive heat cycle is also examined. In addition, it is attempted to clarify the joint stress distribution of the case of tensile load and of the case of superposition of residual stress and actual loading stress.

  • PDF

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

Bolt 연결 구조물의 구멍주위 균열의 응력확대계수 계산 (SIF of cracks of the holes in the Bolt-joint structure)

  • 심동철;이기수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.727-730
    • /
    • 2001
  • In many structures a common method of construction is to make use of bolted or riveted joints. With this type of joint the load is transmitted through a pin from one section of the structure to another. Fatigue cracks often start from the edges of holes, due to local stress concentration. In order to predict the fatigue crack growth, the stress intensity factor K for hole-edge cracks should be available. In this paper the stress intensity factors are computed for cracks in bolt-joint region considering the contact condition.

  • PDF

응력특이성계수에 의한 이종 접합재료의 강도평가 (Strength Evaluation of Bonded Dissimilar Materials by Using Stress Singularity Factor)

  • 정남용;오봉택
    • 대한기계학회논문집A
    • /
    • 제20권7호
    • /
    • pp.2087-2096
    • /
    • 1996
  • Recentrly advantages in composite and light weight material techniques have led to the increased use of bonded dissimilar materials such as ceramics/metal bonded joints, IC package, brazing, coating and soldering in the various industries. It is required to analyze the evaluation method of fracture strength and design methodology of bonded joints in dissimilar materials. Stress singularity according to changes of scarf angles for bonded scarf joints in dissimilar materials was investigated by the boundary element method and static experiments. In this paper, effect of the stress singularity factors at the interface edges of scarf joints on various dissmilar materials combinations were investigated by analysis of its stress and stress singularity index using 2-dimensional elastic program of boundary element method. And the variations of stress singularity index by changes for Young's modulus ratios of materials and scarf angles were investigated. Also, it is found that stress singularities at bonded interface edges are disappeared for certain combination of scarf angle in a pair of bonded dissimilar materials. As the results, it is proposed that the strength evaluation by using stress singularity factors, $\Gamma$, considering stress singularity at the interface edges of bonded dissimilar materials, is very useful.

Modeling of cyclic joint shear deformation contributions in RC beam-column connections to overall frame behavior

  • Shin, Myoungsu;LaFave, James M.
    • Structural Engineering and Mechanics
    • /
    • 제18권5호
    • /
    • pp.645-669
    • /
    • 2004
  • In seismic analysis of moment-resisting frames, beam-column connections are often modeled with rigid joint zones. However, it has been demonstrated that, in ductile reinforced concrete (RC) moment-resisting frames designed based on current codes (to say nothing of older non-ductile frames), the joint zones are in fact not rigid, but rather undergo significant shear deformations that contribute greatly to global drift. Therefore, the "rigid joint" assumption may result in misinterpretation of the global performance characteristics of frames and could consequently lead to miscalculation of strength and ductility demands on constituent frame members. The primary objective of this paper is to propose a rational method for estimating the hysteretic joint shear behavior of RC connections and for incorporating this behavior into frame analysis. The authors tested four RC edge beam-column-slab connection subassemblies subjected to earthquake-type lateral loading; hysteretic joint shear behavior is investigated based on these tests and other laboratory tests reported in the literature. An analytical scheme employing the modified compression field theory (MCFT) is developed to approximate joint shear stress vs. joint shear strain response. A connection model capable of explicitly considering hysteretic joint shear behavior is then formulated for nonlinear structural analysis. In the model, a joint is represented by rigid elements located along the joint edges and nonlinear rotational springs embedded in one of the four hinges linking adjacent rigid elements. The connection model is able to well represent the experimental hysteretic joint shear behavior and overall load-displacement response of connection subassemblies.

구성요소가 서로 종속인 네트워크시스템의 신뢰성모형과 계산알고리즘 (Reliability Modeling and Computational Algorithm of Network Systems with Dependent Components)

  • 홍정식;이창훈
    • 한국경영과학회지
    • /
    • 제14권1호
    • /
    • pp.88-96
    • /
    • 1989
  • General measure in the reliability is the k-terminal reliability, which is the probability that the specified vertices are connected by the working edges. To compute the k-terminal reliability components are usually assumed to be statistically independent. In this study the modeling and analysis of the k-terminal reliability are investigated when dependency among components is considered. As the size of the network increases, the number of the joint probability parameter to represent the dependency among components is increasing exponentially. To avoid such a difficulty the structured-event-based-reliability model (SERM) is presented. This model uses the combination of the network topology (physical representation) and reliability block diagram (logical representation). This enables us to represent the dependency among components in a network form. Computational algorithms for the k-terminal reliability in SERM are based on the factoring algorithm Two features of the ractoring algorithm are the reliability preserving reduction and the privoting edge selection strategy. The pivoting edge selction strategy is modified by two different ways to tackle the replicated edges occuring in SERM. Two algorithms are presented according to each modified pivoting strategy and illustrated by numerical example.

  • PDF