• 제목/요약/키워드: joint core

Search Result 331, Processing Time 0.029 seconds

Load Transferring Mechanism and Design Method of Effective Detailings for Steel Tube-Core Concrete Interaction in CFT Columns with Large-Section

  • Li, Yuanqi;Luo, Jinhui;Fu, Xueyi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.223-232
    • /
    • 2018
  • Two novel types of construction detailings, including using the distributive beam and the inner ring diaphragm in the joint between large-section CFT columns and outrigger truss to enhance the transferring efficiency of huge vertical load, and using the T-shaped stiffeners in the steel tube of large-section CFT columns to promote the local buckling capacity of steel tubes, were tested to investigate their working mechanism and design methods. Experimental results show that the co-working performance between steel tube and inner concrete could be significantly improved by setting the distributive beam and the inner ring diaphragm which can transfer the vertical load directly in the large-section CFT columns. Meanwhile, the T-shaped stiffeners are very helpful to improve the local bulking performance of steel tubes in the column components by the composite action of T-shaped stiffeners together with the core concrete under the range of flange of T-shaped stiffeners. These two approaches can result in a lower steel cost in comparison to normal steel reinforced concrete columns. Finally, a practical engineering case was introduced to illustrate the economy benefits achieved by using the two typical detailings.

Introducing a new all steel accordion force limiting device for space structures

  • Poursharifi, Maryam;Abedi, Karim;Chenaghlou, Mohammadreza;Fleischman, Robert B.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.69-82
    • /
    • 2020
  • A significant defect of space structures is the progressive collapse issue which may restrict their applicability. Force limiting devices (FLDs) have been designed to overcome this deficiency, though they don't operate efficiently in controlling the force displacement characteristics. To overcome this flaw, a new type of FLD is introduced in the present study. The "all steel accordion force limiting device" (AFLD) which consists of three main parts including cylindrical accordion solid core, tubular encasing and joint system is constructed and its behavior has been studied experimentally. To improve AFLD's behavior, Finite element analysis has been carried out by developing models in ABAQUS software. A comprehensive parametric study is done by considering the effective design parameters such as core material, accordion wave length and accordion inner diameter. From the results, it is found that AFLD can obtain a perfect control on the force-displacement characteristics as well as attaining the elastic-perfect plastic behavior. Obtaining higher levels of ultimate load carrying capacity, dissipated energy and ductility ratio can be encountered as the main privileges of this device. Ease of construction and erection are found to be further advantages of AFLD. Based on the obtained results, a procedure for predicting AFLD's behavior is offered.

Establishment of ICT Specialized Teaching-Learning System in the Era of Superintelligence, Super-Connectivity, and Super-Convergence

  • Seung-Woo LEE;Sangwon LEE
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.149-156
    • /
    • 2023
  • Joint research on software, electronic engineering, computer engineering, and financial engineering and the use of ICT knowledge through network formation play an important role in strengthening science and technology-based innovation capabilities and facilitating the development and production process of products using new technologies. For the purpose of this study, I would like to strategically propose ICT specialized education in the 4th industrial revolution. To this end, the ICT specialization model, ICT specialization strategy analysis, and ICT specialization operation and effect were explored to establish ICT specialization strategies centered on software, electronic engineering, computer engineering, and financial engineering in the era of super-intelligence, hyper-connected, and hyper-convergence. Secondly, a roadmap for detailed promotion tasks related to efficient ICT characterization based on core strategies, detailed promotion tasks, and programs was proposed, focusing on talent related to ICT characterization. Thirdly, we would like to propose a reorganization of the academic structure and organization related to ICT characterization. Finally, we would like to propose the establishment of a future-oriented education system related to ICT specialization based on the advanced education and research environment.

Charging and Persistent-Current Mode Operating Characteristics of BSCCO Magnet Using High-Tc Superconducting Power Supply (고온 초전도 전원장치를 이용한 BSCCO Magnet의 충전 및 영구전류 운전 특성)

  • Jo, Hyun-Chul;Yang, Seong-Eun;Kim, Young-Jae;Hwang, Young-Jin;Yoon, Yong-Soo;Chung, Yoon-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • This paper deals with charging and persistent-current mode operating characteristics of BSCCO magnet load using high-temperature superconducting (HTS) power supply. The HTS power supply consists of two heater-triggered switches, an iron-core transformer with the primary copper winding and the secondary BSCCO solenoid, and a BSCCO magnet load. The magnet load was fabricated by double pancake winding and its inductance is about 21 mH. A hall sensor was installed at the middle of the magnet load to measure the current in the load. In order to investigate the efficient pumping characteristics, operating tests of heater-triggered switch with respect to dc heater current were carried out, and the electromagnet current was determined by considering saturation characteristics of its iron core. The saturation characteristics of charged current in the magnet load were observed with respect to various pumping periods: 12 s, 14 s, 24 s and 32 s. After charging the magnet load, the persistent current was measured. The operating characteristics of the persistent current mode were mainly determined by joint resistance and magnet load.

Physical Properties of and Joint Distribution Within the Cheongju Granitic Mass, as Assessed from Drill-core and Geophysical Well-logging Data (시추 및 물리검층자료의 상관해석을 통한 청주화강암체의 물성 정보 및 절리 분포)

  • Lee, Sun-Jung;Lee, Cheol-Hee;Jang, Hyung-Su;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.15-24
    • /
    • 2011
  • To clarify the distribution of joints and fracture zones in the Cheongju granitic mass, we analyzed drill-core and geophysical well-logging data obtained at two boreholes located 30 m from each other. Lithological properties were investigated from the drill-core data and the samples were classified based on the rock mass rating (RMR) and on rock quality designation (RQD). Subsurface discontinuities within soft and hard rocks were examined by geophysical well-logging and cross-hole seismic tomography. The velocity structures constructed from seismic tomography are well correlated with the profile of bedrock depth, previously mapped from a seismic refraction survey. Dynamic elastic moduli, obtained from full waveform sonic and ${\gamma}-{\gamma}$ logging, were interrelated with P-wave velocities to investigate the dynamic properties of the rock mass. Compared with the correlation graph between elastic moduli and velocities for hard rock at borehole BH-1, the correlation points for BH-2 data showed a wide scatter. These scattered points reflect the greater abundance of joints and fractures near borehole BH-2. This interpretation is supported by observations by acoustic televiewer (ATV) and optical televiewer (OTV) image loggings.

The Estimation of Durability Factor of Deteriorated Jointed Concrete Pavement Using Image Analysis Test (화상분석 실험을 이용한 열화된 줄눈콘크리트 포장의 내구성 지수 평가)

  • Choi, Pan-Gil;Kim, Yong-Gon;Yun, Kyong-Ku;Kwon, Soo-Ahn
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.31-38
    • /
    • 2009
  • The primary objective of this study was to estimate the deterioration degree of jointed concrete pavement which was major concrete pavement type in Korea. First of all, visual survey of concrete pavement was performed to observe deterioration types. In the result of visual survey, the majority of concrete pavement deterioration was investigated in joint area. It is appeared that most of the distresses are durability cracking and joint distress. Second, concrete core specimens were taken from eight locations including good section (4 locations) and bad section (4 locations) based on visual survey. The deterioration reasons of concrete pavement were analyzed with ultrasonic pulse velocity test, splitting tensile strength test, and image analysis for concrete core specimens. Among the image analysis test result for 21 concrete core specimens, only two specimens satisfied the Kansas DOT criteria of spacing factor, $250\;{\mu}m$, and the remains of 19 specimens were estimated to be above $250\;{\mu}m$. The durability factor of concrete was estimated very low. As a result, it was analyzed that the main deterioration reason of the deteriorated jointed concrete pavement was to be freezing and thawing damages.

The Mechanical Properties of Trabecular Bone in Knee Joint (무릎관절 해면뼈의 기계적 물성)

  • Kwak, Dai-Soon;Oh, Taek-Yul;Han, Seung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.131-135
    • /
    • 2009
  • In this study, we performed the compressive strength test of trabecular bone in knee joint for measuring the elastic modulus and ultimate strength. The main knee joint is femorotibial articulation between the lateral and medial femorotibial condyle. In the case of osteoarthritis, some patients have only medial condylar osteoarthritis. We performed the mechanical test for comparison the difference of the each condylar strength. We used diamond core-drill and linear precision saw for making the specimens. Specimens were cored from both condyle in distal femur and proximal tibia in fresh cadaver (male 10, female 12), and tested by universal test machine with temperature control saline circulation system. Results of the test in distal femoral parts, averaged elastic modulus was $360.61{\pm}159.40MPa$ for male, $150.89{\pm}70.65MPa$ for female. Averaged ultimate strength was $6.79{\pm}2.91MPa$ for male, $2.89{\pm}1.31MPa$ for female. Male was 2.4 times stronger than female. In the proximal tibial parts, averaged elastic modulus was $108.80{\pm}52.88MPa$ for male, $73.45{\pm}55.06MPa$ for female. Averaged ultimate strength was $2.59{\pm}1.39MPa$ for male, $1.75{\pm}1.16MPa$ for female. Male was 1.5 times stronger than female. In the distal femoral condyle, medial condyle had more strength than lateral condyle at middle region. But lateral condyle had more strength than medial condyle at anterior & posterior regions (p<0.02). In the proximal tibial condyle, medial condyle had more strength than lateral condyle. (p<0.01).

Deformation Analysis of Carrier Pipe for Cold Shrinkable Joint (CSJ 개발을 위한 캐리어 파이프의 변형해석)

  • Lee, Yang-Chang;Lee, Joon-Seong;Lee, Ho-Jeong;Ryu, Jeong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.1
    • /
    • pp.314-319
    • /
    • 2010
  • This paper represents the results of study on Extra High Voltage Power Cable Connection System Development. The purpose is to evaluate structural safety by numerical analysis for the relaxation of electric field concentration and by structural analysis of Carrier Pipe for easy installation of High Insulating Rubber Sleeve in the field, which is core technique of connection system. According to the results, the thickness of Carrier Pipe needs at least 9mm by optimization analysis of deformation behavior and insulating design & relaxation of electric field concentration. The result of contraction behavior of the connection part can be demonstrated with the same result of electric field relaxation analysis at the boundary of the electrode inserted into the insulating rubber sleeve.

Cyclic tests on RC joints retrofitted with pre-stressed steel strips and bonded steel plates

  • Yu, Yunlong;Yang, Yong;Xue, Yicong;Wang, Niannian;Liu, Yaping
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.675-684
    • /
    • 2020
  • An innovative retrofit method using pre-stressed steel strips and externally-bonded steel plates was presented in this paper. With the aim of exploring the seismic performance of the retrofitted RC interior joints, four 1/2-scale retrofitted joint specimens together with one control specimen were designed and subjected to constant axial compression and cyclic loading, with the main test parameters being the volume of steel strips and the existence of externally-bonded steel plates. The damage mechanism, force-displacement hysteretic response, force-displacement envelop curve, energy dissipation and displacement ductility ratio were analyzed to investigate the cyclic behavior of the retrofitted joints. The test results indicated that all the test specimens suffered a typical shear failure at the joint core, and the application of externally-bonded steel plates and that of pre-stressed steel strips could effectively increase the lateral capacity and deformability of the deficient RC interior joints, respectively. The best cyclic behavior could be found in the deficient RC interior joint retrofitted using both externally-bonded steel plates and pre-stressed steel strips due to the increased lateral capacity, displacement ductility and energy dissipation. Finally, based on the test results and the softened strut and tie model, a theoretical model for determining the shear capacity of the retrofitted specimens was proposed and validated.

Identification of Dominant Cause of Cut-Slope Collapse and Monitoring of Reinforced Slope Behavior (개착사면의 붕락요인 분석 및 보강거동 계측)

  • Cho, Tae-Chin;Lee, Sang-Bae;Lee, Guen-Ho;Hwang, Taik-Jean;Kang, Pil-Gue;Won, Byung-Nam
    • Tunnel and Underground Space
    • /
    • v.21 no.1
    • /
    • pp.20-32
    • /
    • 2011
  • Failure aspects of cut-slope, which induce the sequential collapses during the excavation stage, have been analyzed. Slope rock structures are investigated by examining the orientations and positions of discontinuity planes calculated based on the BIPS image inside the boreholes. Drilled core log has been also used to identify the structural defects. Clay minerals of swelling potentials are detected through XRD analysis. Numerical analysis for slope stability has been performed by utilizing the joint shear strength acquired from the direct joint shear test. Cut-slope collapse characteristics have been studied by investigating the posture of failure-prawn joint planes and the stability of tetrahedral blocks of different sizes. Cross-section analysis has been also performed to analyze the cut-slope behavior and to estimate the amount of reinforcement required to secure the stability of cut-slope. Behavior of reinforced cut-slope is also investigated by analyzing the slope monitoring data.