• 제목/요약/키워드: joint cartilage

검색결과 299건 처리시간 0.025초

Quantitative T2 Mapping of Articular Cartilage of the Glenohumeral Joint at 3.0T in Rotator Cuff Disease Patients: the Evaluation of Degenerative Change of Cartilage

  • Lee, Kyung Ryeol;Ko, Su Yeon;Choi, Guk Myung
    • Investigative Magnetic Resonance Imaging
    • /
    • 제23권3호
    • /
    • pp.228-240
    • /
    • 2019
  • Purpose: The aim of this study is to evaluate the T2 value of the articular cartilage of the glenohumeral joint in rotator cuff disease displayed on 3.0T MRI and to apply it in clinical practice. Materials and Methods: This study involved sixty-two patients who underwent shoulder MRI containing T2 mapping. The mean T2 value was measured by placing a free hand ROI over the glenoid or humeral cartilage from the bone-cartilage interface to the articular surface on three consecutive, oblique coronal images. The drawn ROI was subsequently divided into superior and inferior segments. The assessed mean T2 values of the articular cartilage of the glenohumeral joint were compared and evaluated based on the degree of rotator cuff tear, the degree of fatty atrophy of the rotator cuff, and the acromiohumeral distance. Results: ICC values between two readers indicated moderate or good reproducibility. The mean T2 value for the articular cartilage of the glenoid and humeral head cartilage failed to show any significant difference based on the degree of rotator cuff tear. However, the mean T2 values of articular cartilage, based on fatty atrophy, tended to be higher in fatty atrophy 3 or fatty atrophy 4 groups while some subregions displayed significantly higher mean T2 values. There was no correlation between the acromiohumeral distance and the mean T2 values of the articular cartilage of the glenoid and humeral head. Conclusion: T2 mapping of the glenohumeral joint failed to show any significant difference in quantitative analysis of the degenerative change of the articular cartilage based on the degree of rotator cuff tear. However, it also offers quantitative information on the degenerative change of cartilage of the glenohumeral joint in patients with rotator cuff tear and severe fatty atrophy of the rotator cuff.

Development and growth of the human fetal sacroiliac joint revisited: a comparison with the temporomandibular joint

  • Ji Hyun Kim;Zhe-Wu Jin;Shogo Hayashi;Gen Murakami;Hiroshi Abe;Jose Francisco Rodriguez-Vazquez
    • Anatomy and Cell Biology
    • /
    • 제56권2호
    • /
    • pp.252-258
    • /
    • 2023
  • The human fetal sacroiliac joint (SIJ) is characterized by unequal development of the paired bones and delayed cavitation. Thus, during the long in utero period, the bony ilium becomes adjacent to the cartilaginous sacrum. This morphology may be analogous to that of the temporomandibular joint (TMJ). We examined horizontal histological sections of 24 fetuses at 10-30 weeks and compared the timing and sequences of joint cartilage development, cavitation, and ossification of the ilium. We also examined histological sections of the TMJ and humeroradial joint, because these also contain a disk or disk-like structure. In the ilium, endochondral ossification started in the anterior side of the SIJ, extended posteriorly and reached the joint at 12 weeks GA, and then extended over the joint at 15 weeks GA. Likewise, the joint cartilage appeared at the anterior end of the future SIJ at 12 weeks GA, and extended along the bony ilium posteriorly to cover the entire SIJ at 26 weeks GA. The cavitation started at 15 weeks GA. Therefore, joint cartilage development seemed to follow the ossification of the ilium by extending along the SIJ, and cavitation then occurred. This sequence "ossification, followed by joint cartilage formation, and then cavitation" did not occur in the TMJ or humeroradial joint. The TMJ had a periosteum-like membrane that covered the joint surface, but the humeroradial joint did not. After muscle contraction starts, it is likely that the mechanical stress from the bony ilium induces development of joint cartilage.

골관절염에서 줄기세포를 이용한 연골 재생의 최신 지견 (Current Update of Cartilage Regeneration Using Stem Cells in Osteoarthritis)

  • 선종근;최익선;고지욱
    • 대한정형외과학회지
    • /
    • 제54권6호
    • /
    • pp.478-489
    • /
    • 2019
  • 골관절염은 관절연골 침식의 진행을 특징적으로 보이는 질환으로 관절운동 중에 통증을 증가시키고 기계적 스트레스를 견디는 능력을 감소시켜 결과적으로 관절의 가동성과 기능을 저하시킨다. 외상 또는 퇴행성으로 인한 관절연골의 손상이 일반적 관절염의 주요 원인으로 생각되며 이러한 관절연골 손상의 재생에 관한 수많은 연구와 시도들이 현재까지 진행되어 오고 있다. 현재까지 연골 손상의 경우 미세골절술과 자가연골세포 이식술이 일반적인 수술적 치료방법으로 제시되어 왔으나 비교적 양호한 임상 결과에도 불구하고 정상 유리연골의 생성이 미흡하여 시간이 경과하면서 결과가 악화되는 등 단점이 있다. 이를 보완하기 위하여 줄기세포 기반 치료법이 개발되었다. 이 종설에서는 현재 사용되는 다양한 연골 재생 방법들의 장단점 및 결과에 대해 요약하고 특히 중간엽 줄기세포(mesenchymal stem cells) 기반 연골 재생 치료법을 논하고 나아가 이상적인 미래 연골 재생 치료법에 대해서도 고민해보고자 한다.

토끼 관절연골의 마찰 및 윤활 특성 (Friction and Lubrication Behaviors of Rabbit Joint Cartilage)

  • 이권용;이홍철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.42-47
    • /
    • 2000
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

  • PDF

토끼 관절연골의 마찰 및 윤활 특성 (Friction and Lubrication Behaviors of Rabbit Joint Cartilage)

  • 이권용;이홍철
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.307-311
    • /
    • 2001
  • The friction and lubrication characteristics of joint cartilage were investigated using the metatarso-phalangeal joint cartilage of rabbit against rotating stainless steel disk. Friction tests were conducted by dry and bovine serum lubricated sliding at room and body temperatures. For the dry sliding tests, low friction coefficient of 0.1-0.15 was observed at the early period of test, and then the friction coefficient increased as a test continued. With increasing applied load the early period of low friction lengthens. For the lubricated sliding tests, the coefficient of friction decreased as the applied load increased. And also the coefficient of friction decreased continuously to 0.07 as the test duration increases. These results can be interpreted that the squeeze or weeping lubrication mechanism dominates the friction and lubrication characteristics in the joint cartilage of rabbit.

퇴행성관절염(退行性關節炎) 치료제 개발을 위한 수종의 한약재활성 검색 및 기전연구 (The Study on the Effectiveness and Mechanism of Several Herbal Medicines for Development of Osteoarthritis Treatment)

  • 허정은;조은미;양하루;김대성;백용현;이재동;최도영;박동석
    • 대한한의학회지
    • /
    • 제27권1호
    • /
    • pp.229-239
    • /
    • 2006
  • Objectives : Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycan and collagen in the cartilage extracelluar matrix. The purpose of this study was to investigate the effects of KHBJs for cartilage-protective effect in human and rabbit articular cartilage explants. Methods : The cartilage-protective effects of KHBJ were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMPs activity, and histological analysis in rabbit and human cartilage explants culture. Results : KHBJs significantly inhibited GAG and collagen release of rabbit and human cartilage explant in a concentration-dependent manner. Also, KHBJs inhibited MMP-3 and MMP-13 activities from IL-$1{\alpha}$-treated cartilage explants cultures. Histological analysis indicated that KHBJ004 reduced the degradation of the cartilage matrix compared with that of IL-$1{\alpha}$-treated cartilage explants. KHBJ004 had no harmful effect on chondrocytes viability or cartilage morphology in cartilage explants. Conclusions : These results indicate that KHBJs inhibits the degradation of proteoglycan and collagen through the downregulation of MMP-3 and MMP-13 activities without affecting the viability or morphology of IL-$1{\alpha}$-stimulated rabbit and human articular cartilage explants.

  • PDF

Evaluation of Morphological Changes in Degenerative Cartilage Using 3-D Optical Coherence Tomography

  • Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • 제12권2호
    • /
    • pp.98-102
    • /
    • 2008
  • Optical Coherence Tomography (OCT) is an important noninvasive medical imaging technique that can reveal subsurface structures of biological tissue. OCT has demonstrated a good correlation with histology in sufficient resolution to identify morphological changes in articular cartilage to differentiate normal through progressive stages of degenerative joint disease. Current OCT systems provide individual cross-sectional images that are representative of the tissue directly under the scanning beam, but they may not fully demonstrate the degree of degeneration occurring within a region of a joint surface. For a full understanding of the nature and degree of cartilage degeneration within a joint, multiple OCT images must be obtained and an overall assessment of the joint surmised from multiple individual images. This study presents frequency domain three-dimensional (3-D) OCT imaging of degenerative joint cartilage extracted from bovine knees. The 3-D OCT imaging of articular cartilage enables the assembly of 126 individual, adjacent, rapid scanned OCT images into a full 3-D image representation of the tissue scanned, or these may be viewed in a progression of successive individual two-dimensional (2-D) OCT images arranged in 3-D orientation. A fiber-based frequency domain OCT system that provides cross-sectional images was used to acquire 126 successive adjacent images for a sample volume of $6{\times}3.2{\times}2.5\;mm^3$. The axial resolution was $8\;{\mu}m$ in air. The 3-D OCT was able to demonstrate surface topography and subsurface disruption of articular cartilage consistent with the gross image as well as with histological cross-sections of the specimen. The 3-D OCT volumetric imaging of articular cartilage provides an enhanced appreciation and better understanding of regional degenerative joint disease than may be realized by individual 2-D OCT sectional images.

Effect of Cinnamomum Cassia on Cartilage Protection in Rabbit and Human Articular Cartilage

  • Baek, Yong-Hyeon;Huh, Jeong-Eun;Lee, Jae-Dong;Choi, Do-Young;Park, Dong-Suk
    • 대한한의학회지
    • /
    • 제28권4호
    • /
    • pp.148-157
    • /
    • 2007
  • Background & Objective: Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycanand collagen in the cartilage extracellular matrix. The purpose of this study was to investigate the effects of Cinnamomum cassia in inhibiting the release of glycosaminoglycan (GAG), the degradation of collagen, and MMP activity in rabbit and human articular cartilage explants. Methods: The cartilage-protective effects of Cinnamomum cassia were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMP activity, measurement of lactate dehydrogenase activity and histological analysis in rabbit cartilage explants culture. Results: Interleukin-1a (IL-1a) rapidly induced GAG, but collagen was much less readily released from cartilage explants. Cinnamomum cassia significantly inhibited GAG and collagen release in a concentration-dependent manner. Cinnamomum cassia dose-dependently inhibited MMP-1, MMP-3 and MMP-13 activities from IL-1a-treated cartilage explants culture when tested at concentrations ranging from 0.02 to 1 mg/ml. Conclusion : These results indicate that Cinnamomum cassia inhibits the degradation of proteoglycan and collagen through the down regulation of MMP-1, MMP-3 and MMP-13 activities of IL-1a-stimulated rabbit and human articular cartilage explants.

  • PDF

Effects of Aralia cordata Thunb. on Proteoglycan Release, Type II Collagen Degradation and Matrix Metalloproteinase Activity in Rabbit Articular Cartilage Explants

  • Baek, Yong-Hyeon;Seo, Byung-Kwan;Lee, Jae-Dong;Huh, Jeong-Eun;Yang, Ha-Ru;Cho, Eun-Mi;Choi, Do-Young;Kim, Deog-Yoon;Cho, Yoon-Je;Kim, Kang-Il;Park, Dong-Suk
    • Journal of Acupuncture Research
    • /
    • 제22권2호
    • /
    • pp.191-201
    • /
    • 2005
  • Background & Objective: Articular cartilage is a potential target for drugs designed to inhibit the activity of matrix metalloproteinases (MMPs) to stop or slow the destruction of the proteoglycan and collagen in the cartilage extracellular matrix. The purpose of this study was to investigate the effects of Aralia cordata Thunb. in inhibiting the release of glycosaminoglycan (GAG), the degradation of collagen, and MMP activity in rabbit articular cartilage explants. Methods : The cartilage-protective effects of Aralia cordata Thunb. were evaluated by using glycosaminoglycan degradation assay, collagen degradation assay, colorimetric analysis of MMP activity, measurement of lactate dehydrogenase activity and histological analysis in rabbit cartilage explants culture. Results : Interleukin-la (IL-1a) rapidly induced GAG, but collagen was much less readily released from cartilage explants. Aralia cordata Thunb. significantly inhibited GAG and collagen release in a concentration-dependent manner. Aralia cordata Thunb. dose-dependently inhibited MMP-3 and MMP-13 expression and activities from IL-1a-treated cartilage explants cultures when tested at concentrations ranging from 0.02 to 0.2 mg/ml. Aralia cordata Thunb. had no harmful effect on chondrocytes viability or cartilage morphology in cartilage explants. Histological analysis indicated that Aralia cordata Thunb. reduced the degradation of the cartilage matrix compared with that of IL -1a-treated cartilage explants.

  • PDF

증미오비탕이 Monosodium Iodoacetate 유발 관절연골손상에 미치는 영향 (Effects of Jeungmiobi-tang on the Articular Cartilage Injuries Induced by Monosodium Iodoacetate in Rats)

  • 현재철;정수현
    • 대한한의학회지
    • /
    • 제41권3호
    • /
    • pp.138-150
    • /
    • 2020
  • Objectives: This study was carried out to investigate the protective effects of Jeungmiobi-tang on the articular cartilage injuries induced by monosodium iodoacetate in rats. Methods: Twenty four rats were divided into three groups. Rats of normal group (n=8) were injected with 0.1 ml physiological saline into both knee joint cavities. In the rats of control group (n=8) and Jeungmiobi-tang group (n=8), Arthritis was induced by injecting with 0.1 ml monosodium iodoacetate (5 mg/ml) into both knee joint cavities. After the experiment, Gross and histopathological examinations on the knee joint were performed. The content of proteoglycan in articular cartilage and TNF-α and IL-1β in synovial fluid were also analyzed. Results: Grossly, Injuries to the articular cartilage surface was observed weak in the Jeungmiobi-tang group compared to the control group. Proteoglycan content in the articular cartilage was significantly higher in the Jeungmiobi-tang group than in the control group. The chondrocyte score was significantly lower in the Jeungmiobi-tang group than in the control group. Conclusion: According to these results, that Jeungmiobi-tang has protective effects on the articular cartilage injuries induced by monosodium iodoacetate in rats.