• 제목/요약/키워드: jet velocity

검색결과 834건 처리시간 0.028초

직렬 배열된 두 기포의 bursting jet에 대한 수치적 연구 (Numerical Study of Bursting Jet in Two Tandem Bubbles)

  • 이창걸;이선엽;;이재화
    • 한국가시화정보학회지
    • /
    • 제18권3호
    • /
    • pp.52-60
    • /
    • 2020
  • When a bubble reaches a free surface, a bursting of the bubble produces a high speed jet. Despite its practical importance, significant effort has been devoted to investigate a bursting jet by a single bubble near a free surface. In the present study, we perform numerical simulations of bubbles in a tandem arrangement at Bo=0.05. The configuration of the tandem bubbles is systematically varied by changing a radius of a following bubble (RF) and the gap distance between two bubbles (L). Compared to a single bubble case, we show that the bursting bubble in the tandem arrangement accelerates, and the jet velocity increases. Moreover, we find that a critical gap distance at which the jet velocity unexpectedly changes exists in the tandem case.

Flow-induced pressure fluctuations of a moderate Reynolds number jet interacting with a tangential flat plate

  • Marco, Alessandro Di;Mancinelli, Matteo;Camussi, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.243-257
    • /
    • 2016
  • The increase of air traffic volume has brought an increasing amount of issues related to carbon and NOx emissions and noise pollution. Aircraft manufacturers are concentrating their efforts to develop technologies to increase aircraft efficiency and consequently to reduce pollutant discharge and noise emission. Ultra High By-Pass Ratio engine concepts provide reduction of fuel consumption and noise emission thanks to a decrease of the jet velocity exhausting from the engine nozzles. In order to keep same thrust, mass flow and therefore section of fan/nacelle diameter should be increased to compensate velocity reduction. Such feature will lead to close-coupled architectures for engine installation under the wing. A strong jet-wing interaction resulting in a change of turbulent mixing in the aeroacoustic field as well as noise enhancement due to reflection phenomena are therefore expected. On the other hand, pressure fluctuations on the wing as well as on the fuselage represent the forcing loads, which stress panels causing vibrations. Some of these vibrations are re-emitted in the aeroacoustic field as vibration noise, some of them are transmitted in the cockpit as interior noise. In the present work, the interaction between a jet and wing or fuselage is reproduced by a flat surface tangential to an incompressible jet at different radial distances from the nozzle axis. The change in the aerodynamic field due to the presence of the rigid plate was studied by hot wire anemometric measurements, which provided a characterization of mean and fluctuating velocity fields in the jet plume. Pressure fluctuations acting on the flat plate were studied by cavity-mounted microphones which provided point-wise measurements in stream-wise and spanwise directions. Statistical description of velocity and wall pressure fields are determined in terms of Fourier-domain quantities. Scaling laws for pressure auto-spectra and coherence functions are also presented.

축대칭 회전분사류의 초기 유동특성 (Flow Characteristics of Axi-symmetric Swirl Jet in the Initial Regions)

  • 한용운;안영희;김동식
    • 대한기계학회논문집B
    • /
    • 제26권4호
    • /
    • pp.531-538
    • /
    • 2002
  • Flow characteristics of a round jet with swirl number of 0.17 have been investigated using a hot -wire anemometry in the initial region within 10D(exit diameter). Swirl effects were observed by comparing centerline flow characteristics, similarities and turbulent budgets of a swirl jet and a free jet, respectively. To obtain similarity of the radial profiles mean velocity and higher moments were measured at the vertical pl anes, located at 2.5, 5.0, 7.5D, 10D, respectively. The centerline velocity characteristics were also measured. It is turned out that similarities of mean and Reynolds stress are established. The jet boundary has wider width than that of a free jet and the shear stress also becomes stronger. In addition the centerline decay becomes faster than that of the free jet, indicating that the swirl induces more entrainment in the initial region of the swirl Jet by transferring the axial mean kinetic energy into the swirl energy and, therefore, has wider boundary, compared with that of free jet.

미세 원형 충돌수제트의 부분 대류비등에 있어서 자유표면/잠입 제트의 국소 열전달 특성 (Local Heat Transfer Characteristics in Convective Partial Boiling by Impingement of Free-Surface/Submerged Circular Water Jets)

  • 조형희;우성제;신창환
    • 설비공학논문집
    • /
    • 제14권6호
    • /
    • pp.441-449
    • /
    • 2002
  • Single-phase convection and partial nucleate boiling in free-surface and submerged jet impingements of subcooled water ejected through a 2-mm-diameter circular pipe nozzle were investigated by local measurements. Effects of jet velocity and nozzle-to-imping-ing surface distance as well as heat flux on distributions of wall temperature and heat transfer coefficients were considered. Incipience of boiling began from far downstream in contrast with the cases of the planar water jets of high Reynolds numbers. Heat flux increase and velocity decrease reduced the temperature difference between stagnation and far downstream regions with the increasing influence of boiling in partial boiling regime. The chance in nozzle-to-impinging surface distance from H/d=1 to 12 had a significant effect on heat transfer around the stagnation point of the submerged jet, but not for the free-surface jet. The submerged jet provided the lower cooling performance than the free-surface jet due to the entrainment of the pool fluid of which temperature increased.

펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구 (Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator)

  • 김영순;신지철
    • 한국항공우주학회지
    • /
    • 제45권11호
    • /
    • pp.907-913
    • /
    • 2017
  • 아크 플라즈마에 의해 구동되는 스파크 제트의 다양한 에너지 공급 방법에 따른 효율적 운전 성능 특성에 대한 실험적 연구를 수행하였다. 펄스 당 37 mJ의 주입 에너지에 의한 급속한 기체의 가열에 의해 약 330 m/s의 고속 제트가 발생함을 확인하였다. 제트의 최대 속도와 침투 거리는 각각 주입된 전력량과 펄스 당 주입된 에너지에 비례하였다. 낮은 에너지에서는 오리피스 직경이 작을수록 더 높은 속도의 제트가 발생하였다. 공급 에너지가 같다면 전류를 높인 펄스가 펄스 폭을 높인 펄스보다 높은 속도의 제트를 발생시켰다. 펄스 폭이 약 $10{\mu}s$이고 펄스 당 에너지가 약 10 mJ인 경우가 효율적인 운전에 보다 더 적합한 것으로 확인되었다.

단일수분류 및 수분류군에 의한 열전달(2)-1열 수분류군- (Heat Transfer from Single and Arrays of Impinging Water Jets(II)-1 Row of Impinging Water Jets-)

  • 엄기찬;이종수;금성민
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1115-1125
    • /
    • 1997
  • Experiments have been conducted to obtain local and average heat transfer coefficients associated with impingement of a row of circular, free surface-water jets on a constant heat flux surface. Nozzle arrays are a row of 3 jets (nozzle dia.=4.6 mm) and a row of 5 jets (nozzle dia.=3.6 mm), and the nozzle configuration is Reverse cone type revealed good performance in heat transfer. Nozzle-to-plate spacings ranging from 16 mm to 80 mm were investigated for two jet center to center spacings 25 mm and 37.5 mm in the jet velocity of 3 m/s (R $e_{D}$=27000) to 8 m/s (R $e_{D}$=70000). For a row of 3 jets and a row of 5 jets, the stagnation heat transfer of the central jet is lower than that of adjacent jets. In the wall jet region between jets, for small nozzle-to-plate spacing and large jet velocity, the local maximum in the Nusselt number was observed, however, for small jet velocity or large nozzle-to-plate spacing, the local maximum was not observed. Except for the condition of $V_{O}$=8 m/s and H/D=10, the average Nusselt number reveals the following ranking: a row of 5 jets, a row of 3 jets, single jet. For a row of 3 jet, the maximum average Nusselt number occurs at H/D=8 ~ 10, and for a row of 5 jets, it occurs at H/D=2 ~ 4. Compared with the single jet, enhancement of average heat transfer for a row of 3 jets is approximately 1.52 ~ 2.28 times, and 1.69 ~ 3.75 times for a row of 5 jets.ets.s.

노즐출구에 삽입된 다중관에 의한 충돌제트의 유동 및 열전달 특성 (Flow and Heat Transfer Characteristics of a Multi-Tube Inserted Impinging Jet)

  • 황상동;조형희
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.135-145
    • /
    • 2004
  • An experimental study is conducted to investigate the flow and heat transfer characteristics of a multi-tube inserted impinging jet. Four different multi-tube devices are tested for various nozzle-to-plate distance. Flow visualization by smoke-wire method and velocity measurements using a hot-wire anemometer are applied to analyze the flow characteristics of the multi-tube insert impinging jet. The local heat transfer coefficients of the multi-tube inserted impinging jet on the impingement surface are measured and the results are compared to those of the conventional jet. In multi-tube inserted system the multi-tube length plays an important role in the flow and heat transfer characteristics of the jet flow. With multi-tube insert of I3d4 and I6d4 which has relatively longer tube length than the multi-tube-exit of I3d1 and I6d1, the flow maintains its increased velocity far downstream due to interaction between adjacent flows. For the small H/D of 4, the local heat transfer coefficients of multi-tube inserted impinging jet are much higher than those of the conventional jet because the flow has higher velocity and turbulent intensity by the use of the multi-tube device. At large gap distance of H/D=12, also higher heat transfer rates are obtained by installing multi-tube insert except multi-tube insert of I3d1.

연소실 내 동축형 2-유체 분무의 이론적 모델 (Theoretical Model of Coaxial Twin-Fluid Spray In a Liquid Rocket Combustor)

  • 조용호;윤웅섭
    • 한국추진공학회지
    • /
    • 제6권2호
    • /
    • pp.37-44
    • /
    • 2002
  • 액체로켓엔진에 사용되는 2-유체 동축형 분사기의 분무 연소 특성을 수치적으로 해석하였다. 가스 역학적 상호작용에 의한 미립화 및 그에 따른 물리 현상들에 대해 유동에 대한 보존방정식과 이론식들을 적용, 수치화하여 액체 제트의 상태, 제트의 속도, 제트의 붕괴길이, 액적의 크기등을 예측 하였으며, 액체제트 분사공 크기에 따른 미립화의 변화를 고찰하였다. 모델 검증을 위하여 액체 제트의 접촉길이와 액적의 크기를 기존의 실험결과와 비교하였으며, 그 결과 정성적으로 일치함을 나타내었다. 액체 제트의 접촉길이는 분사공의 직경이 증가할수록 짧아지고 액적의 크기도 분사공의 직경이 증가할수록 작아진다. 액체 제트는 박리율 증가에 따른 분무화에 의하여 단면적이 감소되며, 그에 따른 질량유속의 보존과 가스로부터의 운동량 화산에 따라 미립화가 활발해지는 영역으로부터 그 속도가 급속히 증가된다.

THEORETICAL AND EXPERIMENTAL INVESTIGATIONS OF VELOCITY DISTRIBUTIONS FOR ROUND JETS

  • Seo, Il-Won;Mohamed S. Gadalrab;Lyu, Si-wan;Park, Yong-sung
    • Water Engineering Research
    • /
    • 제2권2호
    • /
    • pp.89-101
    • /
    • 2001
  • The theoretical treatments on jets, in which the flow is issuing into a stagnant medium, have been based on Prandtl's mixing theory. In this study, using Prandtl's mixing length hypothesis, a theoretical relationship for the velocity profile of a single round jet is derived. Furthermore, Gaussian expression is used to approximate the theoretical relationship, in which the Gaussian coefficient is assumed to be decreasing exponentially as the flow goes far from the orifice. Two data sets for a single round jet performed by tow different techniques of measurement are used to verify the suggested relationships. The theoretical and Gaussian distribution give close results in spite of the difference in approach. The observed mean velocity distributions are in good agreements with the suggested theoretical and Gaussian distributions.

  • PDF

난류유동 해석을 위한 Dynamic PIV 시스템의 개발 (Development of a Dynamic PIV System for Turbulent Flow Analysis)

  • 이상준;장영길;김석
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields are essential for physical understanding of a complicated turbulent flow. Due to advances of high-speed imaging technique, laser and electronics, high-speed digital cameras and high-repetition pulse lasers are commercially available in nowadays. A dynamic PIV system that can measure consecutive instantaneous velocity field with 1K$\times$ 1K pixels resolution at 1 fps was developed. It consists of a high-speed CMOS camera and a high-repetition Nd:YLF pulse laser. Theoretically, it can capture velocity fields at 20 fps with a reduced spatial resolution. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet of which Reynolds number is about 3000. The particle images of 1024$\times$512 pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF