• Title/Summary/Keyword: jet stream

Search Result 186, Processing Time 0.024 seconds

DEVELOPMENT OF SIMULATION TOOL FOR ORBITAL MOTION OF METEOROID STREAM PARTICLES (METEOROID STREAM 입자들의 궤도 운동 시뮬레이션 TOOL 개발)

  • 김방엽
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • This paper presents the preliminary survey and simulation results of the prediction of Leonid stream's orbital motion. Based on the model survey on eject velocity and perturbation of meteoroid particles, a simulation program was developed and applied to orbital motion of Leonid stream. The Jones ejection distribution model was used to describe the particle's eject velocity and the orbital dynamic model includes perturbations of major planet's gravity. DE405 ephemeris file generated by Solar System Dynamics Group at Jet Propulsion Laboratory in NASA was used for the planet's ephemeris calculations. Solar radiation pressure were also considered in the simulation and 8th order Runge-Kutta algorithm was used a numerical integration method.

  • PDF

An Investigation on Dynamic Behaviors of Single Vortex with CO2 Dilution in a CH4-Air Jet Diffusion Flame (CH4공기 제트 확산화염에서 CO2 첨가에 따른 단일 와동의 동적거동에 관한 연구)

  • Hwang, Chul-Hong;Oh, Chang-Bo;Lee, Dae-Yup;Lee, Chang-Eon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1209-1219
    • /
    • 2003
  • The dynamic behaviors of the single vortex interacting with $CH_4-Air$ jet diffusion flame are investigated numerically. The numerical method is based on a predict-corrector scheme for a low Mach number flow. A two-step global reaction mechanism is adopted as a combustion model. Studies are conducted in fixed initial velocities for the three cases according as where $CO_2$ is added; (1) without dilution, (2) dilution in fuel stream and (3) dilution in oxidizer stream. A single vortex is generated by an axisymmetric jet, which is made by an impulse of a cold fuel when a flame is developed entirely in a computational domain. The simulation shows that $CO_2$ dilution in fuel stream results in somewhat larger vortex radius, and greater amount of entrainment of surrounding fluid than in other cases. Thus, the dilution of $CO_2$ in fuel stream enhances the mixing in single vortex and increases the stretching of the flame surface. The budgets of the vorticity transport equation are examined to reveal the mechanism of vortex formation when $CO_2$ is added. It is found that, in the case of $CO_2$ dilution in fuel stream, the vortex destruction due to volumetric expansion and the vortex production due to baroclinic torque are more dominant than in other cases.

A Numerical Study for the Design of Ventilation System for the gaseous Pollutants (기체 유해물질 환기장치 설계를 위한 수치모사)

  • 엄태인
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.77-84
    • /
    • 1994
  • A study is performed in order to design a effective ventilation equipment for the pollutants in workshop. The procedure has been used to calculate the flow in a confined rectangular space channel. A cross free stream is flowed from open space and jet stream including pollutants is injected from bottom area. Calculation results shows a wake region which exists immediarely downstream of the jet discharge and are compared with the experimental data. Calculation data are in good agreement with experimental results. A wake plays an important role on a stagnation of the pollutants. Thus ventilation equipment has to be designed without a stagnation region which give rise to concentration stratification. In this study, calculation parameters are the position and velocity of pollutants and fresh air from cross free stream. It is concluded that more measurements of local velocities, temperatures and concentrations of the pollutants.

  • PDF

The effect of gas density on the drop trajectory and drop size distribution in high speed gas stream (고속기류에 분사된 액적궤적 및 입경분포에 미치는 주위 기체밀도의 영향)

  • Lee, C.H.
    • Journal of ILASS-Korea
    • /
    • v.5 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • High velocity, gas-assisted liquid drop trajectories were investigated under well-controlled experimental conditions at elevated gas densities and room temperature. A monodisperse stream of drops which are generated by a vibrating-orifice drop generator were injected into a transverse high velocity gas stream. The gas density and air jet velocity were adjusted independently to keep the Weber numbers constant. The Weber numbers studied were 72, 148, 270, 532. The range of experimental conditions included studied the three drop breakup regimes previously referred as bag, stretching/thinning and catastrophic breakup regimes. High-magnification photography and conventional spray field photographs were taken to study the microscopic breakup mechanisms and the drop trajectories in high velocity gas flow fields, respectively. The parent drop trajectories were affected by the gas density and the gas jet velocities and do not show similarity with respect to the either Weber or the Reynolds number, as expected.

  • PDF

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.

A Study for Improvement of Lift Performance of a Horn-type Rudder with the Coanda Effect (콴다 효과를 이용한 혼-타의 양력성능 개선에 관한 연구)

  • Seo, Dae-Won;Oh, Jung-Keun;Lee, Seung-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.4
    • /
    • pp.543-552
    • /
    • 2010
  • The Coanda effect is noticeable when a jet stream is applied tangential to a curved surface since then the jet stream remains attached to the surface beyond the point where flow separates otherwise and results in augmentation of circulation and lift. Numerous experimental and numerical studies have been performed in various fields of aerodynamics to exploit the Coanda effect and many of them found to be useful. It can be speculated that the Coanda effect may have practical application to the field of marine hydrodynamics as well since various control surfaces are being used to control behaviors of ships and offshore structures. In the present study, the Coanda effect has been applied to a horn type rudder and a series of numerical computations and model experiments are performed to find the practical applicability. The results indicate that the Coanda jet increases the lift coefficient of the rudder as much as 52% at the momentum coefficient $C_j$ = 0.1 and the rudder angle ${\alpha}=10^{\circ}$.

Experimental Investigation of Sonic Jet Flows for Wing/Nacelle Integration

  • Kwon, Eui-Yong;Roger Leblanc;Garem, Jean-Henri
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.522-530
    • /
    • 2001
  • An experimental study of compressible jet flows has been undertaken in a small transonic wind tunnel. The aim of this investigation was to realize a jet simulator in the framework of wing/nacelle integration research and to characterize the jet flow behavior. First, free jet configuration, and subsequently jet flow in co-flowing air stream configuration were analyzed. Flow conditions were those encountered in a typical flight condition of a generic transport aircraft, i.e. fully expanded sonic jet flows interacting with a compressible external flowfield. Conventional experimental techniques were used to investigate the jet flows-Schlieren visualization and two-component Laser Doppler Velocimetry (LDV). The mean and fluctuating properties were measured along the jet centerline and in the symmetric plane at various downstream locations. The results of two configurations show remarkable differences in the mean and fluctuating components and agree well with the trend observed by other investigators. Moreover, these experiments enrich the database for such flow conditions and verify the feasibility of its application in future aerodynamic research of wing/nacelle interactions.

  • PDF

Effect of Outer Stagnation Pressure on Jet Structure in Supersonic Coaxial Jet (초음속 동축제트의 구조에 대한 외부 정체압력의 영향)

  • Kim, Myoung-Jong;Woo, Sang-Woo;Lee, Byeong-Eun;Kwon, Soon-Bum
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.664-669
    • /
    • 2001
  • The characteristics of dual coaxial jet which composed of inner supersonic nozzle of 26500 in constant expansion rate with 1.91 design Mach number and outer converging one with $40^{\circ}$ converging angle with the variation of outer nozzle stagnation pressures are experimentally investigated in this paper. In which the stagnation pressure for the inner supersonic nozzle is 750kPa thus, the inner jet leaving the nozzle is slightly underexpanded. The plenum pressures of outer nozzle are varied from 200 to 600kPa. Flow visualizations by shadowgraph method, impact pressure and centerline static pressure measurements of dual coaxial jet are presented. The results show that the presence of outer jet affects significantly the structures and pressure distributions of inner jet. And outer jet causes Mach disk which does not appear for the case of single jet stream. As the stagnation pressure of outer jet increases, impact pressure undulation is severe, but the average impact pressure keeps high far downstream.

  • PDF

Spray Characteristics of a Liquid-fueled Ramjet Engine under High Pressure Air Condition (고압 유동조건에서의 액체 램제트 엔진의 분무특성)

  • Youn, H.J.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.9 no.2
    • /
    • pp.34-40
    • /
    • 2004
  • In a liquid-fueled ramjet engine, the insufficient mixing and evaporation result in the low combustion efficiency and combustion instability. Improving its characteristics and devising a means of fuel droplets with air may compensate these disadvantages of liquid fuel ramjet engine. The jet penetrations of various fuel injectors were measured to investigate the spray characteristics of a liquid-fueled ramjet engine under high pressure air-stream conditions. The penetrations in high pressure conditions are smaller than the values calculated from Inamura's or Lee's equations, and the jet penetrations in the high pressure conditions have a similar tendency. In the dual orifice injectors, the jet penetrations of rare orifice is rapidly increased due to the reduction of the drag, which is created by the jet column of front orifice. The jet penetration of rare orifice is increased because of the drag reduction created by the jet column of the front orifice. Because of the drag reduction formed by the column of jet, the jet penetration in the rear orifice of dual orifice injector is much larger than the jet penetrations of single orifice injector. As the distances of the orifice are increased, the jet penetrations of the rear orifice decrease.

  • PDF

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.