• 제목/요약/키워드: isothermal flow

검색결과 247건 처리시간 0.021초

유체막에서 관성과 열 소산의 영향 (The influence of fluid inertia and heat dissipation in fluid films)

  • 김은필
    • 대한기계학회논문집B
    • /
    • 제21권2호
    • /
    • pp.224-234
    • /
    • 1997
  • It was demonstrated earlier that for laminar, isothermal flow of the lubricant in long journal bearings, inertia has negligible effect on the load carrying capacity and influences only the stability characteristics of the bearing. The question in the present paper is: 'will these conclusions of the isothermal theory remain valid in the presence of significant dissipation, or will lubricant inertia and dissipation interact non-linearly to bring about qualitative changes in bearing performance\ulcorner' The results obtained here assert that the effect of lubricant inertia on load carrying capacity remains negligible, irrespective of the rate of dissipation. The stability of the bearing is, however, affected by lubricant inertia. These results, although obtained here for long bearings with Sommerfeld and Gumbel boundary conditions, are believed to be applicable to practical bearing operations and affirm that bearing load may be calculated from classical, i. e., non-inertial theory.

Equilibria and Dynamics of Toluene and Trichloroethylene onto Activated Carbon Fiber

  • Park, Jee-Won;Lee, Young-Whan;Choi, Dae-Ki;Lee, Sang-Soon
    • 청정기술
    • /
    • 제8권2호
    • /
    • pp.93-99
    • /
    • 2002
  • Adsorption dynamics for toluene and trichloroethylene with an isothermal fixed bed of activated carbon fiber were investigated. Equilibrium isotherms were measured by a static method for toluene and trichloroethylene onto activated carbon fiber at temperatures of 298, 323, and 348 K and pressure up to 3 kPa for toluene and 6 kPa for trichloroethylene, respectively. These results were correlated by the Toth equation. And dynamic experiments in an isothermal condition of 298 K were examined. Breakthrough curves reflected the effects of the experimental variables such as partial pressures for adsorbate and interstitial bulk velocities of gas flow. To present the column dynamics, a dynamic model based on the linear driving force (LDF) mass transfer model was applied.

  • PDF

강-점소성 ALE 유한요소 수식화에 근거한 사각형 형재의 평금형 등온 압출에 대한 3차원 해석 (A Three-Dimensional Rigid-Viscoplastic Finite Element Analysis of isothermal Square Die Extrusion of a Square Section Based on ALE Description)

  • 강연식;양동열
    • 소성∙가공
    • /
    • 제5권1호
    • /
    • pp.55-60
    • /
    • 1996
  • In the finite element analysis of metal forming processes the updated Lagrangian approach has been widely and effectively used to simulate the non-steady state problems. however some difficulties have arisen from abrupt flow change as in extrusion through square dies. In the present work an ALE(arbitrary Lagrangian-Euleria) finite element formulation for deforma-tion analysis are presented fro rigid-viscoplastic materials. The developed finite element program is applied to the isothermal analysis of square die extrusion of a square section. The computational results are compared with those by the updated Lagrangian finite element analysis.

  • PDF

에어스프링 시스템의 성능 개선에 관한 연구 (A Study on the Performance Improvement of an Air Spring System)

  • 장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제10권2호
    • /
    • pp.1-6
    • /
    • 2013
  • This study describes a method which can attenuate reaction force effectively for an air spring system composed of an air spring and auxiliary chamber. For the analysis, the nonlinear governing equation of the air spring system is derived. For a performance improvement of the system, change of the heat transfer effect and the mass flow rates is included in the analysis of the air spring system. The simulation study is presented to show the reaction force is changed by variations in heat transfer characteristics and the air spring system of isothermal process has the best performance. As a result, to improve attenuation characteristics of reaction force, a process in the air spring system should be maintained near isothermal process.

회전하고 있는 바깥쪽 실린더를 갖고 있는 수평 원주형 환형 내에서의 공기의 혼합 대류 (Mixed convection of air in a horizontal cylindrical annulus with rotating outer cylinder)

  • 유주식
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.551-561
    • /
    • 1997
  • Mixed convection of air in a horizontal concentric cylindrical annulus is investigated numerically. Isothermal boundary conditions are prescribed at the inner and outer cylinders, with the inner cylinder being warmer. The forced flow is induced by the outer cylinder which is rotating slowly with constant angular velocity with its axis at the center of the annulus. The effect of the forced flow on the flow pattern and heat transfer of natural convection is investigated for the annulus of (inner-cylinder radius/gap width) = 1. There appear two eddies, one eddy or no eddy according to the Rayleigh and Reynolds numbers. Map of the three flow regimes is constructed on the Ra-Re plane. (author). 28 refs., 9 figs., 2 tabs.

Al6061의 고온변형특성 및 단조 시뮬레이션 적용을 통한 검증 (Flow Stress of A16061 at Elevated Temperature and Its Application to Forging Simulation for verification)

  • 엄재근;장성민;이민철;정순종;박건형;곽양섭;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.474-477
    • /
    • 2009
  • In this paper, flow stress of Al6061 is obtained by compression test in the range of temperature from $300^{\circ}C$ to $550^{\circ}C$ and effective strain-rate from 0.1/s to 20.0/s. The flow stress information is used to simulate an aluminum hot forging process. Non-isothermal simulation is carried out by a rigid-thermoviscoplastic finite element method. The predictions are compared with the experiments in terms of the deformed shape of material.

  • PDF

소듐냉각고속로 KALIMER-600 축소 물모의 열유동 가시화 실험장치 구축 및 거시 유동장 특성 측정 (Water-Simulant Facility Installation for the Sodium-Cooled Fast Reactor KALIMER-600 and Global Flow Measurement)

  • 차재은;김성오
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.54-62
    • /
    • 2011
  • KAERI has developed a KALIMER-600 which is a pool-type sodium-cooled fast reactor with a 600MWe electric generation capacity. For a SFR development, one of the main topics is an enhancement of the reactor system safety. Therefore, we have a long-term plan to design the large sodium experimental facility to evaluate the reactor safety and component performance. In order to extrapolate a thermal hydraulic phenomena in a large sodium reactor, the thermal hydraulics phenomena is under investigation in a 1/$10^{th}$ water-simulant facility for the KALIMER-600. In this paper, we shortly described the experimental facility setup and the measurement of the isothermal global flow behavior. For the flow field measurement, the PIV method was used in a transparent Plexiglas reactor vessel model at around $20^{\circ}C$ water condition.

압축성 회전 유동에서의 비점성 Taylor-Proudman column 유동 (Taylor-Proudman Column Flows in a Compressible Rotating Fluid)

  • 박준상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.27-32
    • /
    • 2001
  • A study has been made of the condition to maintaining Taylor-Proudman column flows in a compressible rotating fluid, which is driven by small mechanical and/or thermal perturbations imposing on the container wall in the basic state of isothermal rigid body rotation. The Rossby and system Ekman numbers are assumed to be very small. The Taylor-Proudman column flow can be produced when energy parameter, e, becomes constant on the whole flow region. Energy balance concept, related to energy parameter, and its physical interpretation are given with comprehensive discussions.

  • PDF

급속 금형가열에 의한 박육 사출성형의 유동특성 개선에 관한 연구 (A Study on Improvement of Flow Characteristics for Thin-Wall Injection Molding by Rapid Mold Heating)

  • 박근;김병훈
    • 소성∙가공
    • /
    • 제15권1호
    • /
    • pp.15-20
    • /
    • 2006
  • The rapid thermal response (RTR) molding is a novel process developed to raise the temperature of mold surface rapidly to the polymer melt temperature prior to the injection stage and then cool rapidly to the ejection temperature. The resulting filling process is achieved inside a hot mold cavity by prohibiting formation of frozen layer so as to enable thin wall injection molding without filling difficulty. The present work covers flow simulation of thin wall injection molding using the RTR molding process. In order to take into account the effects of thermal boundary conditions of the RTR mold, coupled analysis with transient heat transfer simulation is suggested and compared with conventional isothermal analysis. The proposed coupled simulation approach based on solid elements provides reliable thin wall flow estimation for both the conventional molding and the RTR molding processes.

마이크로채널 흐름에 관한 종횡비의 영향 (Effect of Aspect Ratio on Gas Microchannel Flow)

  • 타줄 이슬람;이연원
    • 동력기계공학회지
    • /
    • 제11권3호
    • /
    • pp.16-21
    • /
    • 2007
  • Three dimensional numerical study was carried out to investigate the effect of aspect ratio on microchannel flow. We considered five straight rectangular channels with aspect ratios (height/width) 0.2, 0.4, 0.6, 0.8 and 1.0. Nitrogen gas flow was investigated for both slip and noslip wall boundary conditions. Isothermal wall condition was assumed. We used control volume method for this simulation. The slip velocity increases with the increase of aspect ratio. Friction coefficient decreases with the increase of aspect ratio. Slip friction coefficient is lower than noslip friction coefficient. Mass flow rate of slip model is higher than that of noslip model. We compared our results with the experimental result reported in the literature. The agreement was good.

  • PDF