• Title/Summary/Keyword: isothermal consolidation

Search Result 6, Processing Time 0.017 seconds

Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading

  • Bai, Bing;Shi, Xiaoying
    • Geomechanics and Engineering
    • /
    • v.12 no.4
    • /
    • pp.707-721
    • /
    • 2017
  • The objective of this paper is to experimentally study the consolidation of saturated silty clay subjected to repeated heating-cooling cycles using a modified temperature-controlled triaxial apparatus. Focus is placed on the influence of the water content, confining pressure, and magnitudes and number of thermal loading cycles. The experimental results show that the thermally induced pore pressure increases with increasing water content and magnitude of thermal loading in undrained conditions. After isothermal consolidation at an elevated temperature, the pore pressure continues to decrease and gradually falls below zero during undrained cooling, and the maximum negative pore pressure increases as the water content decreases or the magnitude of thermal loading increases. During isothermal consolidation at ambient temperature after one heating-cooling cycle, the pore pressure begins to rise due to water absorption and finally stabilizes at approximately zero. As the number of thermal loading cycles increases, the thermally induced pore pressure shows a degrading trend, which seems to be more apparent under a higher confining pressure. Overall, the specimens tested show an obvious volume reduction at the completion of a series of heating-cooling cycles, indicating a notable irreversible thermal consolidation deformation.

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot′s Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.105-115
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

A Numerical Study on Thermo-hydro-mechanical Coupling in Continuum Rock Mass Based on the Biot's Consolidation Theory (Biot의 압밀 이론에 근거한 연속체 암반의 열-수리-역학 상호작용의 수치적 연구)

  • 이희석;양주호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.355-365
    • /
    • 2000
  • As large underground projects such as radioactive waste disposal, hot water and heat storage, and geothermal energy become influential, the study, which consider all aspects of thermics, hydraulics and mechanics would be needed. Thermo-Hydro-Mechanical coupling analysis is one of the most complex numerical technique because it should be implemented with the combined three governing equations to analyze the behavior of rock mass. In this study, finite element code, which is based on Biot's consolidation theory, was developed to analyze the thermo-hydro-mechanical coupling in continuum rock mass. To verify the implemented program, one-dimensional consolidation model under the isothermal and non-isothermal conditions was analyzed and was compared with the analytic solution. The parametric study on two-dimensional consolidation was also performed and the effects of several factors such as poisson's ratio and hydraulic anisotropy on rock mass behavior were investigated. In the future, this program would be revised to be used for analysis of general discontinuous media with incorporating discrete joint model.

  • PDF

Growth Mechanism of Nickel Nanodispersoids during Consolidation of $Al_2O_3/Ni$ Nanocomposite Powder ($Al_2O_3/Ni$ 나노복합분말의 치밀화중 분산상 Ni의 성장기구)

  • ;;;;T. Sekino;K. Niihara
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.237-243
    • /
    • 2000
  • The property and performance of the $Al_2O_3/Ni$ nanocomposites have been known to strongly depend on the structural feature of Ni nanodispersoids which affects considerably the structure of matrix. Such nanodispersoids undergo structural evolution in the process of consolidation. Thus, it is very important to understand the microstructural development of Ni nanodispersoids depending on the structure change of the matrix by consolidation. The present investigation has focused on the growth mechanism of Ni nanodispersoids in the initial stage of sintering. $Al_2O_3/Ni$ powder mixtures were prepared by wet ball milling and hydrogen reduction of $Al_2O_3$ and Ni oxide powders. Microstructural development and the growth mechanism of Ni dispersion during isothermal sintering were investigated depending on the porosity and structure of powder compacts. The growth mechanism of Ni was discussed based upon the reported kinetic mechanisms. It is found that the growth mechanism is closely related to the structural change of the compacts that affect material transport for coarsening. The result revealed that with decreasing porosity by consolidation the growth mechanism of Ni nanoparticles is changed from the migration-coalescence process to the interparticle transport mechanism.

  • PDF

Phase Transformation During Hot Consolidation and Heat Treatments in Mechanically Alloyed Iron Silicide (기계적 합금화 Iron Silicide의 열간성형 및 열처리에 의한 상변화)

  • Eo, Sun-Cheol;Kim, Il-Ho;Hwang, Seung-Jun;Jo, Gyeong-Won;Choe, Jae-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1068-1073
    • /
    • 2001
  • An n-type iron$silicide(Fe_{0.98}Co_{0.02}Si_2)$has been produced by mechanical alloying process and consolidated by vacuum hot pressing. Although as-milled powders after 120 hours of milling did not show an alloying progress,${\beta}-FeSi_2$phase transformation was induced by isothermal annealing at$830{\circ}C$for 1 hour, and the fully transformed${\beta}-FeSi_2$phase was obtained after 4 hours of annealing. Near fully dense specimen was obtained after vacuum hot pressing at$ 1100{\circ}C$with a stress of 60MPa. However, as-consolidated iron silicides were consisted of untransformed mixture of ${\Alpha}-Fe_2Si_5$and ${\varepsilon-FeSi$phases. Thus, isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting${\beta}-FeSi_2$phase. The condition for${\beta}-FeSi_2$transformation was investigated by utilizing DTA, SEM, and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at$830{\circ}C$and the transformation behaviour was investigated as a function of annealing time. The mechanical properties of${\beta}-FeSi_2$materials before and after isothermal annealing were characterized in this study.

  • PDF

Phase Transformations and Oxidation Properties of Fe$_{0.98}$Mn$_{0.02}$Si$_2$ Processed by Mechanical Alloying (기계적 합금화법에 의해 제조된 Fe$_{0.98}$Mn$_{0.02}$Si$_2$의 상변태와 산화특성)

  • 심웅식;이동복;어순철
    • Journal of the Korean institute of surface engineering
    • /
    • v.36 no.2
    • /
    • pp.200-205
    • /
    • 2003
  • Thermoelectric p-type $Fe_{0.98}$ $Mn_{ 0.02}$$Si_2$ bulk specimens have been produced by mechanical alloying and consolidation by vacuum hot pressing. The subsequent isothermal annealing was not able to fully transform the mestastable as -milled powders into the $\beta$ $-FeSi_2$ phase, so that the obtained matrix consisted of not only thermoelectric semiconducting $\beta$-FeSi$_2$ but also some residual, untransformed metallic $\alpha$ $- Fe_2$$Si_{ 5}$ and $\varepsilon$-FeSi mixtures. Interestingly, $\beta$ - $FeSi_2$ was more easily obtained in the low density specimen when compared to the high density specimen. The oxidation at 700 and $800^{\circ}C$ in air led to the phase transformation of the above described iron - silicides and the formation of a thin silica surface layer.