• Title/Summary/Keyword: isotherm adsorption curve

Search Result 49, Processing Time 0.018 seconds

Sorption Analysis of Carbon Dioxide onto Cesium Carbonate (세슘카보네이트에서 이산화탄소의 수착반응)

  • Son, Young-Sik;Kim, Seong-Soo;park, Sang-Wook
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.373-379
    • /
    • 2009
  • Cesium carbonate was used as an adsorbent to capture carbon dioxide from gaseous stream of carbon dioxide, nitrogen, and moisture in a fixed-bed to obtain the breakthrough data of $CO_2$. The deactivation model in the non-catalytic heterogeneous reaction systems is used to analyze the sorption kinetics among carbon dioxide, carbonate, and moisture using the experimental breakthrough data. The experimental breakthrough data are fitted very well to the deactivation model than the adsorption isotherm models in the literature.

The Influence of Electrolytes on the Dyeing Properties of Congo Red on Cotton Fibers (Congo Red로 염색한 면섬유의 염색성에 미치는 전해질의 영향)

  • Lee, Young-Hee;Park, Joon-Myung;Sung, Woo-Kyung;Kim, Kyung-Hwan
    • Textile Coloration and Finishing
    • /
    • v.3 no.2
    • /
    • pp.34-42
    • /
    • 1991
  • The effects of electrolyte on dyeing properties of cotton fiber with Congo Red have been studied at 90, 70 and $40^{\circ}C$. Each dyeing carried into an infinite bath with $1\times10^{-4}$ mol/l of Congo Red and with various concentration of electrolytes. The results obtained from this study were as follow; 1. The equilibrium adsorption of dye $(C_\infty)$ values decreased with increasing dyeing temperature, $C_\infty$ values increased in the order KCl>NaCl>LiCl. 2. The values of apparent diffusion coefficients $(D_a)$ increased with increasing dyeing temperature, but $D_a$ values decreased in the order KCl$D_a$ values decreased with increasing electrolyte concentration. 4. Effect of electrolytes decreased with increasing dyeing temperature. 5. The values of standard affinities of dyeing $(-\triangle\mu^{\circ})$, the standard heats of dyeing $(-\triangleH^{\circ})$, and the standard entropies $(-\triangleS^{\circ})$, increased in the order KCl>NaCl>LiCl. 6. Equilibrium adsorption isotherm curve were Freundlich type, and in the Equation y=a.x$^{n}$ , the values of a and n increased in the order KCl>NaCl>LiCl. 7. The value of $-\triangle\mu^{\circ}$, $-\triangleH^{\circ}$, and $-\triangleS^{\circ}$, decreased with increasing electrolyte concentration.

  • PDF

Adsorption of Nicotinic Acid on the Porous Powders (니코틴 산의 다공성 분체 흡착)

  • Shin, Sang-Chul;Cho, Cheong-Weon
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.1
    • /
    • pp.39-49
    • /
    • 1997
  • Nicotinic acid was mixed with glass powders such as controlled pore glass (CPG), glyceryl controlled pore glass (GPG) and glass beads (GB) at room temperature. The physicochemical properties of nicotinic acid in the various mixtures were examined by differential thermal analysis, X-ray diffraction study. Infrared spectroscopy and BET gas adsorption measurements. The peak area at the melting point from the various mixtures of nicotinic acid and CPG was increased with an increase of nicotinic acid concentration while the broad peak area was remained unchanged in the DTA curve. As shown in the powder X-ray diffraction patterns, the crystalline peaks of nicotinic acid disappeared in mixture with CPG, suggesting the interaction of nicotinic acid and porous powders. It was found that the larger the content of CPG, the higher the ratio of an amorphous state to a crystalline state. BET isotherm showed that as the amount of nicotinic acid was increased, the specific surface area was reduced proportionally to nicotinic acid content of up to 40% and remained constant thereafter. Sublimation of nicotinic acid from the mixture of nicotinic acid and CPG was examined. A large quantity of nicotinic acid was retained in the mixture when stored on various temperatures in vacuo for 10 hours. The nicotinic acid mixtures with CPG or GPG showed a high dissolution rates of nicotinic acid in aqueous solution, especially in the initial dissolution stage. CPG is expected to be a good pharmaceutical excipient to reduce the crystallinity of drugs and to prevent sublimation of drugs.

  • PDF

Trihalomethane Removal by a Fixed Bed Carbon Adsorber (고정층(固定層) 활성탄(活性炭)에 의한 Trihalomethane의 제거(除去))

  • Chung, Tai Hak;Chung, Jae Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.87-95
    • /
    • 1983
  • Trihalomethane removal efficiency by a fixed bed carbon adsorber was a subject of this study. Along with laboratory scale column operations, a simple adsorption model was developed to predict removal efficiency. The adsorption model includes an overall mass transfer coefficient, K and Freundlich adsorption constants, $K_F$ and n. Simulation results showed that increasing K and $K_F$ or decreasing n would take more loading and prolong run time of the adsorption bed. Typical S-shaped breakthrough curves were obtained from the experiments. The operational results at $20^{\circ}C$ and $25^{\circ}C$ indicated that a moderate difference in water temperature would not affect the treatment efficiency significantly. The adsorption constants determined from the column operation and the model simulation were reasonably close to those obtained from the isotherm test. It may be concluded that trihalomethane can be removed successfully by a fixed bed carbon adsorber.

  • PDF

Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System (오염수계 내 세슘 제거를 위한 대나무 활성탄의 흡착효율 규명)

  • Ahn, Joungpil;Lee, Minhee
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • The cesium (Cs) removal from the contaminated water system has been considered to be difficult because the cesium likes to exist as soluble phases such as ion and complexes than the solid in water system. Many researches have focused on developing the breakthrough adsorbent to increase the cesium removal efficiency in water. In this study, the laboratory scale experiments were performed to investigate the feasibility of the adsorption process using the bamboo charcoal for the Cs contaminated water system. The Cs removal efficiency of the bamboo charcoal were measured and the optimal adsorption conditions were determined by the adsorption batch experiments. Total 5 types of commercialized bamboo charcoals in Korea were used to identify their surface properties from SEM-EDS and XRD analyses and 3 types of bamboo charcoals having large specific surface areas were used for the adsorption batch experiment. The batch experiments to calculate the Cs removal efficiency were performed at conditions of various Cs concentration (0.01 - 10 mg/L), pH (3 - 11), temperature ($5-30^{\circ}C$), and adsorption time (10 - 120 min.). Experimental results were fitted to the Langmuir adsorption isotherm curve and their adsorption constants were determined to understand the adsorption properties of bamboo charcoal for Cs contaminated water system. From results of SEM-EDS analyses, the surfaces of bamboo charcoal particles were composed of typical fiber structures having various pores and dense lamella structures in supporting major adsorption spaces for Cs. From results of adsorption batch experiments, the Cs-133 removal efficiency of C type bamboo charcoal was the highest among those of 3 bamboo charcoal types and it was higher than 75 % (maximum of 82 %) even when the initial Cs concentration in water was lower than 1.0 mg/L, suggesting that the adsorption process using the bamboo charcoal has a great potential to remove Cs from the genuine Cs contaminated water, of which Cs concentration is low (< 1.0 mg/L) in general. The high Cs removal efficiency of bamboo charcoal was maintained in a relatively wide range of temperatures and pHs, supporting that the usage of the bamboo charcoal is feasible for various types of water. Experimental results were similar to the Langmuir adsorption model and the maximum amount of Cs adsorption (qm:mg/g) was 63.4 mg/g, which was higher than those of commercialized adsorbents used in previous studies. The surface coverage (${\theta}$) of bamboo charcoal was also maintained in low when the Cs concentration in water was < 1.0 mg/L, investigating that the Cs contaminated water can be remediated up with a small amount of bamboo charcoal.

Dyeing Property and Antimicrobial activity of Protein Fiber Using Terminalia chebula Retzius Extract (가자열매 추출물을 이용한 단백질 섬유의 염색과 항균효과)

  • Nam, Ki Yeon;Lee, Jung Soon
    • Fashion & Textile Research Journal
    • /
    • v.16 no.3
    • /
    • pp.476-484
    • /
    • 2014
  • The purpose of this study was to investigate the dyeing properties and anti-microbial ability of silk and wool fabrics dyed with Terminalia chebula Retzius(TCR) extract using two extraction solvent, hot water and methanol. Dyeing properties of fabrics were studied by investigating the characteristics of colorant, changes in dye uptake under different dyeing conditions, and by investigating color change when mordants were applied. Also, color fastness, and antimicrobial activity of dyed fabrics were estimated. Regardless of extraction solvent type, colorant showed maximum absorption wavelength at 280 nm and 578 nm, which implied that tannin was the major pigment component of TCR. Also, through FT-IR spectrum result, it was confirmed that tannin of TCR methanol extract was hydrolysable tannin. But for the hot water extract, it was only assumed that its tannin was condenced tannin. Fabric dyed with hot water solvent extract showed higher dye uptake than fabric dyed with methanol solvent extract, dye uptake increasing by higher concentration of the dye, longer dyeing time and higher dyeing temperature. And the absorption curve between TCR extract and protein fiber was shaped in the form of Langmuir adsorption isotherm. Fabric dyed without mordant was yellow in color, and when dyed with mordant, fabric showed various colors depending on mordant types except Sn. Color fastness to washing was generally fine and color fastness to light was moderate. But color fastness to rubbing and dry cleaning was outstanding. Lastly, dyed fabrics showed very good antimicrobial activity of 99.9% against Staphylococcus aureus and Kiebsiella pneumoniae.

A Study on the Optimum Conditions for Preparation of Calcium hydrogenphosphate Dihydrate by Box-Wilson Experimental Design (Box-Wilson 실험계획에 의한 연마용 인산일수소칼슘의 최적 제조조건 추구 및 안정화)

  • Rhee, Gye-Ju;Kwak, Son-Hyuk;Suh, Sung-Su
    • Journal of Pharmaceutical Investigation
    • /
    • v.26 no.3
    • /
    • pp.221-232
    • /
    • 1996
  • An abrasive, calcium hydrogen phosphate dihydrate (DCPD), was synthesized in a Box-wilson experimental design by reactions between phosphoric acid and milk of lime, and calcium chloride and sodium phosphate solutions, and stabilized with TSPP and TMP. The optimum conditions for preparation of DCPD from phosphoric acid with milk of lime were such as; reaction temp.; $51.9^{\circ}C$, conc. of lime; 25.9%, conc. of phosphoric acd; 77.9%, drying temp.; $60.2^{\circ}C$ and final pH; 6.46. The physico-chemical and pharmaceutical properties of DCPD were showed as follows: glycerin absorption value(68 ml/100g), whiteness(99.5%), particle size(10.9 nm), pH(7.8), and set test(pass). XRD and SEM of DCPD indicated a monoclinic system crystallographically. $N_2$ adsorption isotherm curve by BET showed non porous type II form. The micromeritic parameters of DCPD showed that surface area was $3.27{\sim}4.6\;cm^{2}/g$ and pore volume, pore area and pore radius were negligible. The rheogram of the toothpaste containing DCPD showed pseudoplastic flow with yield value of 321, and thixotropic behavior forming hysteresis loop. These results meet the requirements as abrasive standard, and sythesized DCPD is expected as a good dental abrasive such as a high quality grade in practice.

  • PDF

Effect of Curvature Dependency of Surface Tension on the Result of Pore-Volume Distribution Analysis (동공부피 분포의 계산결과에 미치는 표면장력의 곡률 의존도 효과)

  • Cho Chang-Hyun;Ahn Woon-Sun;Chang Seihun
    • Journal of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.341-348
    • /
    • 1972
  • The significance of the curvature dependency correction of surface tension is studied in calculating the pore volume distribution of porous adsorbent from nitrogen adsorption isotherm. That is, Kelvin radii are calculated with curvature dependent surface tension values calculated by Chang et al, and then with these Kelvin radii, pore volume distributions of three porous adsorbents, silica alumina (steam deactivated), silica gel (Davidson 59), and silica gel (Mallinc-krodt Standard Luminescent), are calculated. The results are compared with those obtained by the previous method in which surface tension is taken as constant and also with the others. obtained by the modelless method proposed by Brunauer et al. The maximum point of the distribution curve shift to the larger pore radius, when the curvature dependency is considered. Furthermore, the relative pressure at which capillary condensation commences is by far the lower than that accepted previously. This effect becomes significant as the pore radius approaches to the micropore range.

  • PDF

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.