• Title/Summary/Keyword: isotactic polystyrene

Search Result 2, Processing Time 0.022 seconds

The Morphology, Structure and Melting Behaviour of Cold Crystallized Isotactic Polystyrene

  • Marega, Carla;Causin, Valerio;Marigo, Antonio
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.588-595
    • /
    • 2006
  • The morphology, structure and melting behaviour of cold-crystallized isotactic polystyrene (iPS) were studied by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). The polymer was found to crystallize according to the dual-lamellar stack model. The two populations of lamellae, along with a melting-recrystallization phenomenon, determined the appearance of multiple melting peaks in DSC traces. The annealing peak was attributed to the relaxation of a rigid amorphous phase, rather than to the melting of crystalline material.

Imparting Disperse and Cationic Dyeability to Polypropylene through Melt Blending

  • Teli M. D.;Adivarekar R. V.;Ramani V.Y.;Sabale A.G.
    • Fibers and Polymers
    • /
    • v.5 no.4
    • /
    • pp.264-269
    • /
    • 2004
  • The present paper deals with improvement in disperse dyeablility as well as imparting of cationic dyeablility to difficultly dyeable polypropylene by a melt blending technique. Isotactic polypropylene (PP) was blended with fibre grade polybutylene terephthalate (PBT), cationic dyeable polyethylene terephthalate (CDPET) and polystyrene (PS), individually. The resulting binary blends were spun and drawn into fibres at draw ratio 2, 2.5, and 3. The compatibility of blends, structural changes of fibres in terms of X-ray crystallinity, relative crystallinity, sonic modulus, birefringence and thermal stability were examined. The blended fibres were found to be disperse dyeable by the conventional method of high temperature and high pressure dyeing. And this dye ability increased with increase in the level of substitution. PP/CDPET blend also exhibited dyeablility with cationic dyes in addition to that with disperse dyes. The optimum level of blending was predicted keeping in view of tenacity and thermal stability of melt blend fibres. The wash fastness properties of the dyed fibres were found to be of high rate.