• 제목/요약/키워드: isospectral manifolds

검색결과 2건 처리시간 0.018초

ISOSPECTRAL MANIFOLDS WITH DIFFERENT LOCAL GEOMETRY

  • Gordon, Carolyn S.
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.955-970
    • /
    • 2001
  • Two compact Riemannian manifolds are said to be isospectral if the associated Laplace-Beltrami operators have the same eigenvalue spectrum. We describe a method, based on the used of Riemannian submersions, for constructing isospectral manifolds with different local geometry and survey examples constructed through this method.

  • PDF

On the spectral rigidity of almost isospectral manifolds

  • Pak, Hong-Kyung
    • 대한수학회보
    • /
    • 제29권2호
    • /
    • pp.237-243
    • /
    • 1992
  • Let (M, g, J) be a closed Kahler manifold of complex dimension m > 1. We denote by Spec(M,g) the spectrum of the real Laplace-Beltrami operator. DELTA. acting on functions on M. The following characterization problem on the spectral rigidity of the complex projective space (CP$^{m}$ , g$_{0}$ , J$_{0}$ ) with the standard complex structure J$_{0}$ and the Fubini-Study metric g$_{0}$ has been attacked by many mathematicians : if (M,g,J) and (CP$^{m}$ ,g$_{0}$ ,J$_{0}$ ) are isospectral then is it true that (M,g,J) is holomorphically isometric to (CP$^{m}$ ,g$_{0}$ ,J$_{0}$ )\ulcorner In [BGM], [LB], it is proved that if (M,J) is (CP$^{m}$ , J$_{0}$ ) then the answer to the problem is affirmative. Tanno ([Ta]) has proved that the answer is affirmative if m .leq. 6. Recently, Wu([Wu]) has showed in a more general sense that if (M, g) and (CP$^{m}$ ,g$_{0}$ ) are (-4/m)-isospectral, m .geq. 4, and if the second betti number b$_{2}$(M) is equal to b$_{2}$(CP$^{m}$ ).

  • PDF