• 제목/요약/키워드: isoform diversity

검색결과 7건 처리시간 0.02초

Beyond gene expression level: How are Bayesian methods doing a great job in quantification of isoform diversity and allelic imbalance?

  • Oh, Sunghee;Kim, Chul Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권1호
    • /
    • pp.225-243
    • /
    • 2016
  • Thanks to recent advance of next generation sequencing techniques, RNA-seq enabled to have an unprecedented opportunity to identify transcript variants with isoform diversity and allelic imbalance (Anders et al., 2012) by different transcriptional rates. To date, it is well known that those features might be associated with the aberrant patterns of disease complexity such as tissue (Anders and Huber, 2010; Anders et al., 2012; Nariai et al., 2014) specific differential expression at isoform levels or tissue specific allelic imbalance in mal-functionality of disease processes, etc. Nevertheless, the knowledge of post-transcriptional modification and AI in transcriptomic and genomic areas has been little known in the traditional platforms due to the limitation of technology and insufficient resolution. We here stress the potential of isoform variability and allelic specific expression that are relevant to the abnormality of disease mechanisms in transcriptional genetic regulatory networks. In addition, we systematically review how robust Bayesian approaches in RNA-seq have been developed and utilized in this regard in the field.

Nebulin C-terminus Interacts with NCBP51, a New Isoform of RING Finger Protein 125 (RNF125)

  • Kim, Ji-Hee;Kim, Hyun-Suk;Park, Eun-Ran;Choi, Jae-Kyoung;Lee, Yeong-Mi;Choi, Jun-Hyuk;Shin, Jung-Woog;Kim, Chong-Rak
    • 대한의생명과학회지
    • /
    • 제13권1호
    • /
    • pp.1-10
    • /
    • 2007
  • Nebulin, a giant modular protein from muscle, is thought to act as molecular ruler in sarcomere assembly. In skeletal muscle, the C-terminal ${\sim}50 kDa$ region of nebulin extends into the Z-line lattice. The most recent studies implicated highlighting its extensive isoform diversity and exciting reports revealed its expression in cardiac and non-muscle tissues containing brain. Also these novel findings are indicating that nebulin is actually a multifunctional filament system, perhaps playing roles in signal transduction, contractile regulation, and myofibril force generation, as well as other not yet defined functions. However the binding protein of nebulin and function in brain is still unknown. A novel binding partner of nebulin C-terminal region was identified by screening a human brain cDNA library using yeast two-hybrid system. Nebulin C-terminus binding protein 51 (NCBP51) was contained a RING-finger domain and identified a new isoform of RING finger protein 125 (RNF125). The interaction was confirmed using the GST pull-down assay. NCBP51 belongs to a family of the RING finger proteins and its function remains to be identified in brain. The role of nebulin and NCBP51 will be studied by loss-of-function using siRNA technique in brain.

  • PDF

Deducing Isoform Abundance from Exon Junction Microarray

  • Kim Po-Ra;Oh S.-June;Lee Sang-Hyuk
    • Genomics & Informatics
    • /
    • 제4권1호
    • /
    • pp.33-39
    • /
    • 2006
  • Alternative splicing (AS) is an important mechanism of producing transcriptome diversity and microarray techniques are being used increasingly to monitor the splice variants. There exist three types of microarrays interrogating AS events-junction, exon, and tiling arrays. Junction probes have the advantage of monitoring the splice site directly. Johnson et al., performed a genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays (Science 302:2141-2144, 2003), which monitored splicing at every known exon-exon junctions for more than 10,000 multi-exon human genes in 52 tissues and cell lines. Here, we describe an algorithm to deduce the relative concentration of isoforms from the junction array data. Non-negative Matrix Factorization (NMF) is applied to obtain the transcript structure inferred from the expression data. Then we choose the transcript models consistent with the ECgene model of alternative splicing which is based on mRNA and EST alignment. The probe-transcript matrix is constructed using the NMF-consistent ECgene transcripts, and the isoform abundance is deduced from the non-negative least squares (NNLS) fitting of experimental data. Our method can be easily extended to other types of microarrays with exon or junction probes.

Identification of Non-Muscle Nebulin Isoform in Human Brain Library

  • Joo, Young-Mi;Lee, Min-A;Choi, Pyung-Rak;Choi, Jae-Kyoung;Lee, Yeong-Mi;Choi, Su-Il;Kim, Myong-Shin;Jeon, Eun-Hee;Kim, So-Young;Kim, Chong-Rak
    • 대한의생명과학회지
    • /
    • 제10권1호
    • /
    • pp.23-29
    • /
    • 2004
  • Nebulin is a (Mr 600∼900 kDa) large actin-binding protein specific to skeletal muscle and thought to act as a molecular template that regulates the length of thin filaments. Cardiac muscles of higher vertebrates have been shown earlier to lack nebulin. Recently, full-length nebulin mRNA transcripts have been detected in heart muscle, but at lower levels than in skeletal muscle. Nebulin expression also was detected in the kidney, eye, and otic canal, suggesting that nebulin isoforms may also be expressed in these organs. We have searched for nebulin isoforms in brain of human using PCR and Northern blot. Here, we provide evidence that nebulin mRNA transcripts are expressed in brain. Seven nebulin isoforms (B, C, D, E, F, G and H form) are obtained in human skeletal muscle and four isoforms (B, C, G and H form) in human brain cDNA library. We cloned the 1.3 kb of nebulin fragment from human adult brain library by PCR. The identity of the PCR product was confirmed by sequence analysis. The partial brain nebulin sequence was 99% identical to the skeletal muscle cDNA as determined by Blast alignment. It contains two simple-repeats HR1, HR2 and linker-repeats exon l35∼143 except exon 140. It was different from skeletal muscle B form, which contain HR1 and HR8. These data suggest that nebulin isoform diversity occurs even more extensively than previously known, likely contributing to the distinct thin filament architecture of different striated muscles.

  • PDF

Incredible RNA: Dual Functions of Coding and Noncoding

  • Nam, Jin-Wu;Choi, Seo-Won;You, Bo-Hyun
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.367-374
    • /
    • 2016
  • Since the RNA world hypothesis was proposed, a large number of regulatory noncoding RNAs (ncRNAs) have been identified in many species, ranging from microorganisms to mammals. During the characterization of these newly discovered RNAs, RNAs having both coding and noncoding functions were discovered, and these were considered bifunctional RNAs. The recent use of computational and high-throughput experimental approaches has revealed increasing evidence of various sources of bifunctional RNAs, such as protein-coding mRNAs with a noncoding isoform and long ncRNAs bearing a small open reading frame. Therefore, the genomic diversity of Janusfaced RNA molecules that have dual characteristics of coding and noncoding indicates that the functional roles of RNAs have to be revisited in cells on a genome-wide scale. Such studies would allow us to further understand the complex gene-regulatory network in cells. In this review, we discuss three major genomic sources of bifunctional RNAs and present a handful of examples of bifunctional RNA along with their functional roles.

Differential Expression of Four $Ca_v$3.1 Splice Variants in the Repeat III-IV Loop

  • Lee, Sang-Soo;Park, You-Mi;Kang, Ho-Won;Bang, Hyo-Weon;Jeong, Seong-Woo;Lee, Jung-Ha
    • Animal cells and systems
    • /
    • 제12권3호
    • /
    • pp.137-141
    • /
    • 2008
  • Molecular cloning revealed the three isoforms($Ca_v3.1,\;Ca_v3.2,\;and\;Ca_v3.3$) of the T-type calcium channel subfamily. Expression studies exhibited their distinctive electrophysiological and pharmacological properties, accounting for diverse properties of T-type calcium channel currents previously characterized from isolated cells. However, electrophysiological properties of ion channels have shown to be more diversified by their splice variants. We here searched splice variants of rat $Ca_v3.1$ T-type channel by reverse-transcription-polymerase chain reaction(RT-PCR) to further explore diversity of $Ca_v3.1$. Interestingly, analyses of cloned RT-PCR products displayed that there were at least four splicing variants of rat $Ca_v3.1$ in the loop connecting repeats III and IV. Southern blot analyses indicated that the predominantly detected variant in brain was $Ca_v3.1a$(492 bp), which were rarely detected in most of peripheral tissues. Other two variants($Ca_v3.1c$, 546 bp; $Ca_v3.1d$, 525 bp) were detected in most of the tissues examined. The smallest isoform($Ca_v3.1b$, 471 bp) was rarely detected all the tissues. Electrophysiological characterization of the splicing variants indicated that the splice variants differ in inactivation kinetics and the voltage dependence of activation and inactivation as well.

5종류의 인간유래 시알산전이효소 유전자들의 게놈구조 분석 (Genomic Structure Analyses of Five Kinds of Human Sialyltransferase Gene)

  • 강남영;김상완;김철호;이영춘
    • 생명과학회지
    • /
    • 제14권6호
    • /
    • pp.1009-1017
    • /
    • 2004
  • 인간유래 시알산전이효소 유전자들의 특이적 발현과 그들의 mRNA isoform의 생성에 대한 조절기구를 이해하기 위하여 5종류의 human 시알산전이효소 유전자(hST3Cal II, hST8Sia II, hST8Sia III, hSTS8Sia IV, hST8Sia V)들의 게놈구조를 분석하였다. hST3Gal II 유전자는 17 kb이상의 게놈상에 46 bp에서 1017 bp의 길이를 가진 exon이 6개로 이루어져 있고, hST8Sia III유전자는 10 kb이상의 게놈상에 125bp에서 2023bp의 길이를 가진 exon이 4개로 이루어져 있어 다른 human 시알산전이효소 유전자들보다 짧고 단순한 구조를 가지고 있었다. 반면에 다른 3종류의 유전자(hST8Sia II, hST8Sia IV, hST8Sia V)들은 70 kb이상의 게놈상에 5개이상의 exon으로 이루어져 있으며, 5종류 모두 exon-intron boundary는 GT-AG rule을 나타내고 있었다. 특히 모든 시알산전이효소에 고도로 보존되어 있는 sialylmotif L은 hST8Sia III유전자에서는 하나의 exon에 존재하는 반면에, 다른 시알산전이효소 유전자에서는 분리된 exon에 존재하여 exon의 구조적 다양성을 나타내고 있다. 또한, 본 연구에서는 5'-RACE와 cap site hunting법에 의해 hST3Gal II 유전자의 전사개시점을 결정하였다.