• Title/Summary/Keyword: isochore

Search Result 3, Processing Time 0.023 seconds

The Application of Computer Program for Determination of Fluid Properties and P-T Condition from Microthermometric Data on Fluid Inclusions (유체포유물의 생성시 온도-압력 조건과 유체포유물의 물리화학적 특성연구에 있어서의 컴퓨터 프로그램이용)

  • Oh, Chang-Whan;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.26 no.1
    • /
    • pp.21-27
    • /
    • 1993
  • Fluid inclusion has been widely used to study the origin and physiochemical conditions of ore deposits. However, it is difficult to get the accurate physiochemical data from fluid inclusion study due to the error of microthermometric data and the complexity of calculation of density and isochore of fluid inclusion. The computer programs HALWAT, $CO_2$, and CHNACL written by Nicholls and Crowford (1985) partly contributed to improve the accuracy of physiochemical data by using complicated equations. These programs are applied to determine the densities and isochores of fluid inclusions for the Cretaceous Keumhak mine using Choi and So's data (1992) and for the Jurassic Samhwanghak mine using Yun's data (1990). The estimated PoT for Keumhak mine from calculated isochores of coexisting fluid inclusions are $230^{\circ}{\sim}290^{\circ}C$ and 500~800 bar which matche well to the poT estimated by Choi and So ($280^{\circ}{\sim}360^{\circ}C$ and 500~800 bar, 1992). However, the poT for Samwhanghak mine estimated in this study by combining the calculated isochores and sulfur isotope geothermometer data by Yun (1990) are about 4~7 kb at $329{\pm}50^{\circ}{\sim}344{\pm}55^{\circ}C$ which are quite different form the P-T estimates by Yun ($255^{\circ}{\sim}294^{\circ}C$ and 1.2~1.9kb, 1990). This discrepancy caused by misinterpretation of homogenization temperature (Th) of fluid inclusion and by application of inappropriate isochores. The application of homogenization temperature and/or inappropriately selected isochore to determine the trapping PoT condition of ore-deposits should be avoided, particularly for ore-deposits formed at pressures higher than 1~2 kb.

  • PDF

The use of fluid inclusions to constrain P-T-X conditions of formation of Eonyang amethyst (언양 자수정 형성 환경의 압력-온도-성분에 대한 유체포유물의 이용)

  • K. H. Yang
    • The Journal of the Petrological Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • Eonyang amethyst deposits are thought to be spatially and temporally associated with the biotite granite of the Kyeongsang Basin. The examined euhedral quartz crystals in cavities in the aplite intruded biotite granite are colored-zoned from white at the base to amethystine at the tops. Three types of primary Inclusions were observed and three is representing each types are constructed to constrain the trapping conditions and fluid evolution involved during the formation of the amethyst. The intersection of the isochore representing the early fluid inclusions with solidus temperature of the host granite indicates initial quartz formation at about $600^{\circ}C$ and 1.0-1.5 kbars . Intermediate quartz formation, associated with the high-salinity inclusions, occurred at somewhat lower temperatures ($400^{circ}c$) and pressures of about 1 kbar. The amethystine quartz formed from $H_2O$-$CO_2$-NaCl fluids at temperatures between 280-$400^{circ}c$ and pressures of about 1 kbar. Early quartz is interpreted to have formed from fluids that either exsolved from or were in equilibrium with the granite at near solidus conditions, whereas the amethystine quartz apparently grew from fluids of at least partial sedimentary origin.

  • PDF

The Binding of Food Dyes with Human Serum Albumin

  • Yoon, Jung-Hae;Mckenzie, Mc-Kenzie, Duncan;F.Elizabeth-Prichard
    • Archives of Pharmacal Research
    • /
    • v.19 no.4
    • /
    • pp.269-274
    • /
    • 1996
  • The binding interactions between human serum albumin (HSA) and the edible food dyes amaranth, tartrazine and sunset yellow have been studied. Intrinsic association constants and the free energy changes associated with dye-protein binding at physiological pH for amaranth and tartrazine, and at two different pH values for sunset yellow have been calculated from ultrafiltration data. The temperature dependence $(20-40^{\circ}C)$ of the intrinsic association constants at pH 7.4 for amaranth-HSA and tartrazine-HSA mixtures have been measured, from which a plot of the van't Hoff isochore exhibits a marked change in slope around $30^{\circ}C$ indicating a possible change in protein conformation. The number of dye binding sites on HSA is reported for all the above conditions. HSA-ligand binding enthalpies have been used in conjunction with the N-B transitional binding enthalpy for HSA, to calculate the enthalpy for the N-B transition when ligands are bound with the protein.

  • PDF