• Title/Summary/Keyword: iso1

Search Result 2,472, Processing Time 0.025 seconds

Studies on the Effects of Caponization and Various Hormone Treatment on the Meat Production and Quality in Growing Chicken (닭에 있어서 거세(去勢) 및 Hormone 처리(處理)가 산육성(産肉性) 및 육질(肉質)에 미치는 영향(影響)에 관한 연구(硏究))

  • Ra, Kwang Yon
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.9-47
    • /
    • 1975
  • These experiments were caried out to study the effects of caponization and various hormone treatments upon meat production and improvement of meat quality of growing chicken. Sixtyseven days old 160 New Hampshire cockerels were treated and growth rate, carcass yield, change of weight of individual organs, meat composition and change of amino acid were measured and analysed. Otherwise change of testis and thyroid gland by hormone treatment were investigated histologically. The results obtained were as follows. 1. The effectst of caponization and hormone treatment upon meat production were; 1) Body weight of cockerels in D. E. S. group without caponization was increased. upon 96.86% than initial period and A. C. T. H. group was 104.22% but other groups and all carponization groups were lighter than those of control group. 2) Weekly body gain of D. E. S. group without caponization was best showing the significance (102.69 g) and the group with caponization were lower than those groups without caponization. 3) Carcass yield was best in Testo. group without caponization (831.2 g) and the group with caponization were lower than the group without caponization. 4) Carcass rate was highest in A. C. T. H. group with caponization and (67.22%) lowest in Testo. group without caponization (63.37%), but any significance was not recognized. 2. The effects of caponizatitn and hormone treatments upon the coposition of meat and amino acids were; 1) Any significance was not recognized between treated and untreated group about change of moisture, crude protein, crude ash and glycogen contents in meat. 2) Fat co tent in muscle in the all treated groups were higher than that of control group. 3) Extracts of group without caponization were higher than those of groups with caponization. 4) Lysin contents were highest in D. E. S. group with caponization (11. 12/ 16.0 g N) and generelly Testo. group was lower compared with D. E. S. group. 5) Histidine and Arginine contents were higher in the groups with caponization than without caponization. 6) Aspartic acid content were higher in D. E. S. group and A. C. T. H. group without depend on caponization. 7) Treonine content was higher in Testo. group without caponization and in the group with caponization and without hormone treatment compared with those of control group without caponization. 8) Serine content was decreased in the group with caponization and increased by D. E. S. and A. C. T. H treatment groups and glutamic acid was also decreased in Testo. group with out caponization. 9) Cystine content was decreased by Testo. treatment and was not appeared in Testo. group without caponization. 10) Valine content was lower in control group with caponization but significance was not recognized between other groups and control group without caponization. 11) Glycine, Alanine, Methionine. Isoleucine, Leucine, Thyrosine and Phenylalanine contents were not so difference between hormone treated groups and control group without caponization. 3. The effects of caponization and hormone treatment upon the change of organs were: 1) The weight of all organs were heaviest in D. E. S. group without caponization (18.5g) and lightest in A. C. T. H. group without caponization (155. 3g) but no significance was recognized between hormone treatment groups. 2) Heart weight was heaviest in D. E. S. group without caponization (7.46 g) and lightest in Testo. group without caponization (5.95 g). 3) Liver weight was heaviest in D. E. S. group without caponization(32.89g) and lightest in hormone untreated group with caponization(29.66g). Significance was not recognized. 4) Spleen weight was heaivest in Testo. group with caponization (3.22 g) and lightest in D. E. S. group without caponization(2.00g) in contrast with the other groups. High significance was recognized among the groups (P<0.01). 5) Cloacal thymus weight was lightest in D. E. S. group with or without caponization compared with control group without caponization. High significance was recognized among the groups. 6) Muscle fat content was not appeared in A. C. T. H. group with caponization, but it was highly increased in D. E. S. group with or without caponization. 7) Testis weight was lightest in D. E. S. group (0.38g) compared with control group (2.66g). Significance was recognized among the groups. 8) Large intestine, small intestine and cecum weight and length were heavier and longer in D. E. S. group without caponization and control group without caponization was lighter than those of hormone treated groups. 4. The effects of caponization and hormone treatment upon histological change of testis and thyroid gland: 1) The histological change of testis was significantly appeared in D. E. S. group that seminifirous tubles was slowly atrophied, the funtion of spernatogenesis was ceased, spermatocyte was changed as degeneration by pyknosis and karyorrhexis and interstitial cell was also atrophied, but in Testo. and A. C. T. H. group were similar as control group. 2) The histological change of thyroid gland in Testo. and A. C. T. H. groups without caponization were similar to that of control group without caponization, but in D. E. S. group without caponization, was changed squamously. Thyroid gland of the groups with caponization, epithelium of was atrophied and changed squamously as degeneration by pyknosis and karyorrhexis and the function of thyroid gland was slowly ceased in colloid and in hormone treated group with caponization.

  • PDF

Microbiological and Enzymological Studies on the Flavor Components of Sea Food Pickles (젓갈등속(等屬)의 정미성분(呈味成分)에 관(關)한 미생물학적(微生物學的) 및 효소학적(酵素學的) 연구(硏究))

  • Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.11
    • /
    • pp.1-27
    • /
    • 1969
  • More than thirty kinds of sea food pickles have been eaten in Korea. Out of these salted yellow tail pickle, salted clam pickle, salted oyster pickle, and salted cuttlefish pickle were employed for the analysis of their components, identification of main fermenting microbes, and determination of enzyme characteristics concerned. Also studied was the effect of enzymic action of microbes, which are concerned with the fermenting of pickles, on the production of flavorous 5'-mononucleotides and amino acids. The results are summarized as follows: 1. Microflora observed in the pickles are: (a) Total count of viable cells after 1-2 months of pickling was found to be $10^7$ and that after 6 months decreased to $10^4$. (b) Microbial occurence in the early stage of pickling was observed to be 10-20% Micrococcus spp., 10-20% Brevibacterium spp., 0-30% Sarcina spp., 20-30% Leuconostoc spp., ca 30% Bacillus spp., 0-10% Pseudomonas spp., 0-10% Flavobacterium spp., and 0-20% yeast. (c) Following the early stage of pickling, mainly halophilic bacteria such as Bacillus subtilis, Leuconostoc mesenteroides, Pediococcus halophilus and Sarcina litoralis, were found to exhibit an effect on the fermentation of pickle and their enzyme activities were in direct concern in fermentation of pickles. (d) Among the bacteria participating in the fermentation, Sarcina litoralis 8-14 and 8-16 strains were in need of high nutritional requirement and the former was grown only in the presence of purine, pyrimidine and cystine and the latter purine, pyrimidine and glutamic acid. 2. Enzyme characteristics studied in relation to the raw materials and the concerned microbes isolated are as follows: (a) A small amount of protease was found in the raw materials and 30-60% decrease in protease activity was demonstrated at 7% salt concentration. (b) Protease activity of halophilic bacteria, Bacillus subtilis 7-6, 11-1, 3-6 and 9-4 strains, in the complete media decreased by 10-30% at the 7% salt concentration and that of Sarcina litoralis 8-14 and 8-16 strains decreased by 10-20%. (c) Proteins in the raw materials were found to be hydrolyzed to yield free amino acids by protease in the fermenting microbes. (d) No accumulation of flavorous 5'-mononucleotides was demonstrated because RNA-depolymerase in the raw materials and the pickles tended to decompose RNA into nucleoside and phosphoric acid. (e) The enzyme produced in Bacillus subtilis 3-6 strain isolated from the salted clam pickles, was ascertained to be 5'-phosphodiesterase because of its ability to decompose RNA and thus accumulating 5'-mononucleotide. (f) It was demonstrated that the activity of phosphodiesterase in Bacillus subtilis 3-6 strain was enhanced by some components in the corn steep liquor and salted clam pickle. The enzyme activity was found to decrease by 10-30% and 40-60% at the salt concentration of 10% and 20%, respectively. 3. Quantitative data for free amino acids in the pickles are as follows: (a) Amounts of acidic amino acids such as glutamic and aspartic acids in salted clam pickle, were observed to be 2-10 times other pickles and it is considered that the abundance in these amino acids may contribute significantly to the specific flavor of this food. (b) Large amounts of basic amino acids such as arginine and histidine were found to occur in salted yellow tail pickle. (c) It is much interesting that in the salted cuttlefish pickle the contents of sulfur-containing amino acids were exceedingly high compared with those of others: cystine was found to be 17-130 times and methionine, 7-19 times. (d) In the salted oyster pickle a high content of some essential amino acids such as lysine, threonine, isoleucine and leucine, was demonstrated and a specific flavor of the pickle was ascribed to the sweet amino acids. Contents of alanine and glycine in the salted oyster pickle were 4 and 3-14 times as much as those of the others respectively. 4. Analytical data for 5'-mononucleotides in the pickles are as follows: (a) 5'-Adenylic acid and 3'-adenylic acid were found in large amounts in the salted yellow tail pickle and 5'-inosinic acid in lesser amount. (b) 5'-Adenylic acid, especially 3'-adenylic acid predominated in amount in the salted oyster pickle over that in the other pickles. (c) The salted cuttlefish pickle was found to contain only 5'-adenylic acid and 3'-adenylic acid. It has become evident from the above fact that clam and the invertebrate lack of adenylic deaminase and contain high content of adenylic acid. Thus, they were demonstrated to be the AMP-type. (d) 5'-Inosinic acid was contained in the salted yellow tail pickle in a significant concentration, and it might be considered to be IMP-type. 5. Comparative data for flavor with regard to the flavorous amino acids and the contents of 5'-mononucleotides are: (a) A specific flavor of salted yellow tail pickle was ascribed to the abundance in glutamic acid and aspartic acid, and to the existence of a small amount of flavorous 5'-inosinic acid. The combined effect of these components was belived to exhibit a synergistic action in producing a specific fiavor to the pickle. (b) A specific flavor of salted clam pickle has been demonstrated to be attributable to the richness in glutamic acid and aspartic acid rather than to that of 5'-mononucleotides.

  • PDF