• 제목/요약/키워드: ischemia/reperfusion injury

Search Result 282, Processing Time 0.028 seconds

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Neuroprotective Effects of Hydroxyfullerene in Rats Subjected to Global Cerebral Ischemia

  • Kim, Young-Ock;Kim, Hak-Jae;Kim, Su-Kang;Yoon, Bum-Chul
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.3
    • /
    • pp.218-223
    • /
    • 2008
  • Oxidative stress is believed to contribute to the neuronal damage induced by cerebral ischemia/reperfusion injury. The present study was undertaken to evaluate the possible antioxidant neuroprotective effect of hydroxyfullerene (a radical absorbing cage molecule) against neuronal death in hippocampal CA1 neurons following transient global cerebral ischemia in the rat. Transient global cerebral ischemia was induced in male Wistar rats by four vessel- occlusion (4VO) for 10 min. Lipid peroxidation in brain tissues was determined by measuring the concentrations of thiobarbituric acid-reactive substances (TBARS). Furthermore, the apoptotic effects of ${H_2}{O_2}$ on PC12 cells were also investigated. Cell viabilities were measured using MTT [3-(4,5-dimethylthiazolyl-2)-2,-5-diphenyltetrazolium bromide] assays. Hydroxyfullerene, when administered to rats at 0.3-3 mg/kg i.p. at 0 and 90 minutes after 4-VO was found to significantly reduce CA1 neuron death by 72.4% on hippocampal CA1 neurons. Our findings suggest that hydroxyfullerene protects neurons from transient global cerebral injury in the rat hippocampus by reducing oxidative stress and lipid peroxidation levels, which contribute to apoptotic cell death.

Effects of Astragali Radix and Polygalae Radix on Cerebral Ischemic and Reperfused Injury (황기와 원지분획의 뇌허혈에 관한 약효연구)

  • Han, Suk-Hee;Park, Jin-Hyuk;Kim, Jin-Sook;Lee, Sun-Mee
    • YAKHAK HOEJI
    • /
    • v.44 no.4
    • /
    • pp.371-377
    • /
    • 2000
  • In order to investigate the pharmacological properties of fractions of Astragali Radix and Polygalae Radix, the effects of the fractions on cerebral ischemia and subsequent reperfusion were studied. Brain ischemia was induced by bilateral common carotid artery occlusion in mongolian gerbil. Brains were recirculated for 30 mins after the 20 min occlusion. Methanol and butanol fractions of Astragali Radix and Polygalae Radix were administered orally 2 hrs before common carotid artery occlusion. Histological observations showed that brain ischemia induced severe brain damage evidenced by the presence of necrotic foci, edema and hemorrhage. This injury was prevented by the methanol fraction and butanol fraction of Polygalae Radix. The level of ATP in brain tissue significantly decreased in ischemic gerbils. This decrease was prevented by the pretreatment with butanol fraction of Polygalae Radix. In contrast, the levels of lactate and lipid peroxide were both elevated in ischemic gerbils. This elevation was inhibited by the pretreatments with methanol fraction and butanol fraction of Polygalae Radix. Our findings suggest that the Polygalae Radix improves ischemia-induced brain damage.

  • PDF

Role of Adenosine and Protein Kinase C in the Anti-ischemic Process of Ischemic Preconditioning in Rat Heart (허혈전처치의 허혈심장 보호과정에서 Adenosine 및 Protein Kinase C의 역할)

  • You, Ho-Jin;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.1
    • /
    • pp.31-37
    • /
    • 1996
  • The protective effect of 'ischemic preconditioning (IP)'on ischemia-reperfusion injury of heart has been reported in various animal species, but the mechanism is unclear. In an attempt to elucidate the mechanism of IP, we examined the effects of blockers against adenosine and protein kinase C in preconditioned heart of rat. The hearts perfused with oxygen-saturated Krebs-Henseleit solution by Langendorff method were exposed to 30 min global ischemia followed by 20 min reperfusion. IP was performed with three episodes of 5 min ischcmia and 5 min reperfusion just before ischemia-reperfusion. IP prevented the depression of contractile function and the myocardial contracture in the ischemic-reperfused heart and reduced the release of lactate dehydrogenase during the reperfusion period. Polymyxin B, chelerythrine and colchicine, PKC inhibitors, attenuated almost completely the anti-ischemic effect of IP, while adenosine receptor antagonists did not. These results indicate that PKC may be a crucial intracellular mediator in anti-ischemic action of IP in ischemic-reperfused rat heart, while adenosine may not be involved in the mechanism of IP.

  • PDF

Conversion of Myocardial Xanthine Oxidase in Ischemic Heart of Rat (허혈심근 Xanthine Oxidase 의 전환에 관한 연구)

  • 박창권
    • Journal of Chest Surgery
    • /
    • v.21 no.5
    • /
    • pp.803-815
    • /
    • 1988
  • The present experiments were performed to confirm the hypothesis that xanthine oxidase[XOD], as a source and mechanism of oxygen radical production, plays an important role in the genesis of the reperfusion injury of ischemic myocardium. The experimental ischemic-reperfusion injury was induced in isolated, Langendorff preparations of rat hearts by 60 min. Of global ischemia with aortic clamping followed by 20 min. of reperfusion with oxygenated Krebs-Henseleit solution[pH 7.4, 37*C]. The results were as follows: 1. The releases of creatine phosphokinase and a lipid peroxidation product, malondialdehyde[MDA] into the coronary effluent were abruptly increased upon reperfusion of ischemic hearts. The increases of the enzyme and MDA were suppressed significantly in the hearts removed from rats pretreated with allopurinol, a specific XOD inhibitor[20mg/kg, oral, 24 hrs and 2 hrs before study]. This effect of allopurinol was comparable to that of oxygen radical scavengers, superoxide dismutase[5, 000U] and catalase[12, 500 U]. 2. The increased SOD-inhibitable reduction of ferricytochrome C, which was infused to the hearts starting with reperfusion, was significantly suppressed in allopurinol pretreated hearts. 3. Activities of myocardial XOD were compared in the normal control hearts and the ischemic ones. Total enzyme activities were not different in both hearts. However, comparing with the control, the ischemic ones showed higher activity in 0-form and lower activities in D-form and D/O-form. 4. In the ischemic hearts, phenylmethylsulfonyl fluoride, a serine protease inhibitor, prevented significantly the increase of 0-form and the decreases of D and D/O-form, while thiol reagents did not affect the changes of the enzyme. 5. The increase of 0-form and the decreases of D and D/0-form were not significant in both calcium-free perfused and pimozide, a calmodulin inhibitor, treated ischemic hearts. 6. The SOD-inhibitable reduction of ferricytochrome C were suppressed by PMSF and pimozide treatment as well as by calcium-free perfusion. It is suggested from these results that in the ischemic rat myocardium, xanthine oxidase is converted to oxygen radical producing 0-form by calcium, calmodulin-dependent proteolysis and plays a contributing role in the genesis of ischemic-reperfusion injury by producing oxygen free radicals.

  • PDF

Neuroprotective effects of Angelicae Acutilobae Radix water extract against ischemia·reperfusion-induced apoptosis in SK-N-SH neuronal cells (허혈·재관류 유도 신경세포사멸에 대한 일당귀 물추출물의 신경보호효과 연구)

  • Oh, Tae-Woo;Park, Ki-Ho;Lee, Mi-Young;Choi, Go-Ya;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.26 no.4
    • /
    • pp.67-74
    • /
    • 2011
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water extract of Angelicae Acutilobae Radix(AA) on ischemia reperfusion-induced apoptosis in SK-N-SH human brain neuronal cells. Methods: SK-N-SH cells were treated with different concentrations of AA water extract (0.1, 0.2, 0.5 and 1.0 mg/ml) for 2 hr and then stimulated with Dulbecco's phosphate-buffered saline containing CI-DPBS: 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, reperfused with growth medium, and incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. The levels of caspase-3 protein were determined by Western blot and apoptotic body was observed by Hoechst 33258 staining. Results : AA extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. AA also increased the ratio of ADP/ATP in ischemia-induced neuronal cells and decreased the expression levels of apoptotic protein, caspase-3 and apoptotic DNA damage. Conclusions : Our results suggest that AA extract has a neuroprotective property via suppressing the apoptosis and increasing the energy levels in neuronal cells, suggesting that AA extract may has a therapeutic potential in the treatment of ischemic brain injury.

Neuroprotective effects of some herbal medicine plant extract against ischemia·reperfusion-induced cell death in SK-N-SH neuronal cells (허혈·재관류 유도성 신경세포사멸에 대하여 신경보호효과를 가지는 약용식물 추출물의 검색)

  • Oh, Tae-Woo;Lee, Mi Young;Lee, Hye Won;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.28 no.2
    • /
    • pp.45-53
    • /
    • 2013
  • Objectives : The purpose of the study is to determine the neuroprotective effects of the water and 80% EtOH extract of some herbal medicine plant on ischemia reperfusion-induced cell death in SK-N-SH human brain neuronal cells. Methods : SK-N-SH cells were treated with 3mM sodium azide and 10 mM 2-deoxy-D-glucose for 45 min, ptior to the addition of different concentrations of herbal medicine plant extract (0, 10, 25, 50, 100, 250, 500, 1000 ${\mu}g/ml$) for 2 hr and then reperfused with growth medium, incubated for 24 h. Cell viability was determined by WST-1 assay, and ATP/ADP levels were measured by ADP/ATP ratio assay kit. Results : Herbal medicine plant extract significantly inhibited decreasing the cell viability in ischemia-induced SK-N-SH cells. Also increased the ratio of ADP/ATP in ischemia-induced neuronal cells. Conclusions : Our results suggest that herbal medicine plant extract has a neuroprotective property via increasing the energy levels in neuronal cells, suggesting that extract may has a therapeutic potential in the treatment of ischemic brain injury. The exact component and mechanism remains for the future study.

Initial Diagnosis of Acute Renal Failure Induced by Ischemia in Miniature Pig (미니돼지에서 허혈성 신장 손상의 조기진단)

  • Kim, Se-Eun;Ko, A-Ra;Bae, Chun-Sik;Park, Soo-Hyun;Han, Ho-Jae;Shim, Kyung-Mi;Kang, Seong-Soo
    • Journal of Veterinary Clinics
    • /
    • v.28 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Acute renal injury induced by ischemia is a major cause of high morbidity and mortality in hospitalized patients and a common complication in hospitalized patients. Thus, the work with acute renal failure and renal ischemia has been studied for many years. Although serum creatinine concentration that is widely used as an index of renal function performs fairly well for estimating kidney function in patients with stable chronic kidney disease, it performs poorly in the setting of acute disease. Thus, an ideal biomarker for acute kidney injury would help clinicians and scientists diagnose the most common form of acute kidney injury in hospitalized patients, acute tubular necrosis, early and accurately, and may aid to risk-stratify patients with acute kidney injury by predicting the need for renal replacement therapy, the duration of acute kidney injury, the length of stay and mortality. In this study, renal ischemia and reperfusion were performed by clapming and un-clamping right renal artery in miniature pigs. Plasma blood urea nitrogen (BUN) and creatinine were examined at pre- clamping, after-clamping at 0, 1 and 3 hours. And we searched initial indicators in these samples. Also, renal tissue was collected and searched the initial indicator by PCR and western blotting. As a result, hypoxia inducible factor $1{\alpha}$ ($HIF1{\alpha}$), nuclear factor kappa-B ($NF{\kappa}B$), $I{\kappa}B$, erythropoietin (EPO), erythropoietin receptor (EPOR), angiopoietin-1 and vascular endothelial growth factor (VEGF) were showed significant changes among the renal protein. $HIF1{\alpha}$, EPO, and EPOR were showed significant changes among the renal gene. Thus, these markers will be used as initial diagnosis of acute renal failure.

Alteration of Nitric Oxide Synthase and Guanylyl Cyclase Activity in Rats with Ischemia/Reperfusion Renal Injury

  • Bae, Eun-Hui;Kim, Soo-Wan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.6
    • /
    • pp.337-341
    • /
    • 2006
  • The present study was designed to investigate the protein expression of nitric oxide synthase (NOS) and guanylyl cyclase (GC) activity in ischemia/perfusion (I/R) renal injury in rats. Renal I/R injury was experimentally induced by clamping the both renal pedicle for 40 min in Sprague-Dawley male rats. The renal expression of NOS isoforms was determined by Western blot analysis, and the activity of guanylyl cyclase was determined by the amount of guanosine 3', 5'-cyclic monophosphate (cGMP) formed in response to sodium nitroprusside (SNP), NO donor. I/R injury resulted in renal failure associated with decreased urine osmolality. The expression of inducible NOS (iNOS) was increased in I/R injury rats compared with controls, while endothelial NOS (eNOS) and neuronal NOS (nNOS) expression was decreased. The urinary excretion of NO metabolites was decreased in I/R injury rats. The cGMP production provoked by SNP was decreased in the papilla, but not in glomerulus. These results indicate an altered regulation of NOS expression and guanylyl cyclase activity in I/R-induced nephropathy.

Autophagy in Ischemic Livers: A Critical Role of Sirtuin 1/Mitofusin 2 Axis in Autophagy Induction

  • Chun, Sung Kook;Go, Kristina;Yang, Ming-Jim;Zendejas, Ivan;Behrns, Kevin E.;Kim, Jae-Sung
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.35-46
    • /
    • 2016
  • No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion. Growing evidence indicates that reperfusion impairs mitophagy, leading to mitochondrial dysfunction, defective oxidative phosphorylation, accumulation of toxic metabolites, energy loss and ultimately cell death. The importance of acetylation/deacetylation cycle in the mitochondria and mitophagy has recently gained attention. Emerging data suggest that sirtuins, enzymes deacetylating a variety of target proteins in cellular metabolism, survival and longevity, may also act as an autophagy modulator. This review highlights recent advances of our understanding of a mechanistic correlation between sirtuin 1, mitophagy and ischemic liver injury.