• Title/Summary/Keyword: irrigation water supply capacity

Search Result 56, Processing Time 0.026 seconds

Assessment of Anti-Drought Capacity for Agricultural Reservoirs using RCP Scenarios (RCP 시나리오 기반 농업용 저수지의 내한능력 평가)

  • Park, Na-Young;Choi, Jin-Yong;Yoo, Seung-Hwan;Lee, Sang-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.13-24
    • /
    • 2013
  • Agriculture is affected directly by climate conditions and changes, and it is necessary to understand the impact of climate change on agricultural reservoirs which are the main water resources for paddy fields in Korea. This study aimed to evaluate the impact of climate change on the anti-drought capacity including water supply capability (WSC) and drought response ability (DRA) of agricultural reservoirs based on RCP (Representative Concentration Pathway) 4.5 and 8.5 scenarios of CanESM2 (The Second Generation Earth System Model) provided by CCCma (Canadian Center for Climate Modeling and Analysis). The WSC and DRA were estimated using frequency analysis and runs theory. The six reservoirs (Yooshin, Nogok, Kumsung, Songgok, Gapyung, Seoma) were selected considering geographical characteristics and design criteria of reservoir capacity. In case of Seoma reservoir, more than 10 year drought return period (DRP), the variation of the WSC was estimated larger than the others. In case of Yooshin reservior (2~5 DRP) DRC was decreased in 2025s under RCP8.5. These results could be utilized for agricultural reservoirs management and future design criteria considering climate change impacts on paddy irrigation.

Analysis of Soil Moisture Changes in Reclaimed Tideland Using Van Genuchten Model (Van Genuchten 모델을 활용한 간척지의 토양수분변화 분석)

  • Ko, Dae-Hee;Son, Jae-Gwon;Lee, Gi-Sung;Kim, Jeong-Kyun;Song, Jae-Do;Park, Young-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.53-61
    • /
    • 2020
  • The laboratory model test was conducted by dividing domestic reclaimed tideland into Sandy Loam (SL) and Silt Clay Loam (SiCL) to estimate soil moisture change and water supply according to soil characteristic when establishing irrigation plan for reclaimed tideland upland crop. In addition, the applicability of each scenario was verified using Van Genuchten model, which is the most widely used mathematical model for analyzing soil moisture characteristics of reclaimed tideland uplands crops. The required water supply according to the target soil moisture tension by reclaimed tideland is as follow. In the case of SL, soil depths of 0~10 cm, 10~20 cm were analyzed as 19 mm, 35 mm to reach the field capacity, and SiCL, 33 mm, 63 mm. The required water supply of SiCL was higher than that of SL. The study compared the simulation results from the scenarios of Van Genuchen model and the measured results from the laboratory model test based on according to the reclaimed tidelands. In the case of parameter, θs, θr, α, η were analyzed 0.55, 0.18, 0.064, 1.74 in SL and 0.46, 0.22, 0.105, 1.92 in SiCL. In terms of soil characteristics, SL with better water permeability was found to have higher applicability than SiCL. By Soil depth, applicability was found in 0~10 cm directly affected by water supply.

Nutrient Leaching and Crop Uptake in Weighing Lysimeter Planted with Soybean as Affected by Water Management (중량식 라이시미터에서 콩 재배시 물관리 방법에 의한 양분의 용탈과 작물 흡수)

  • Lee, Ye-Jin;Han, Kyung-Hwa;Lee, Seul-Bi;Sung, Jwa-Kyung;Song, Yo-Sung;Lee, Deog-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • BACKGROUND: Soil water content strongly depends on weather condition and irrigation, and it could influence on crop nutrient use efficiency. This study was performed to assess nutrient uptake of soybean by soil water condition. METHODS AND RESULTS: In this study, nutrient leaching and crop uptake as affacted by water management practice was investigated using weighing lysimeter which is located in National institute of agricultural science, Wanju, Jeonbuk province from June 2015 to October 2016. Water supply for soybean (cv. Daewon) was managed with irrigation and rainfall. Nitrate leaching was greatest in the rainfall treatment at early July 2016. Yield of soybean in the rainfall treatment was only 25% compared to the irrigation due to the drought at flowering and podding period. The uptake of nitrogen was considerably reduced by drought whereas the uptake of phosphorus and potassium was less affected by drought. CONCLUSION: It was proven that nitrogen loss and uptake were dependent on soil water condition. Therefore, irrigation water management to maintain available soil moisture capacity is critical to nitrogen uptake and yield of soybean.

Geotechnical considerations for the existing dam rehabilitation (기존댐 재개발시의 지반공학적 고려)

  • Jeon, Je-Sung;Shin, Dong-Hoon;Kim, Ki-Young;Cho, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.589-596
    • /
    • 2005
  • The public has negative understanding about dam construction nowadays although dam plays an important role in water supply to satisfy essential demand for living. Dam rehabilitation, in this actuality, has been recognized as an alternative to expedite continuous water policies related to irrigation and flood control. This study focused on dam rehabilitation and included its necessity and discussions on case histories associated with increasing reservoir capacity, spillway modification, overtopping protection, seepage control and improving stability of old dam. This paper, in geotechnical aspects, presents discussions of various rehabilitation methods and factors to be considered in designing dam rehabilitation.

  • PDF

Assessment of Agricultural Water Supply Capacity Using MODSIM-DSS Coupled with SWAT (SWAT과 MODSIM-DSS 모형을 연계한 금강유역의 농업용수 공급능력 평가)

  • Ahn, So Ra;Park, Geun Ae;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.507-519
    • /
    • 2013
  • This study is to evaluate agricultural water supply capacity in Geum river basin (9,865 $km^2$), one of the 5 big river basin of South Korea using MODSIM-DSS (MODified SIMyld-Decision Support System) model. The model is a generalized river basin decision support system and network flow model developed at Colorado State University designed specifically to meet the growing demands and pressures on river basin management. The model was established by dividing the basin into 14 subbasins and the irrigation facilities viz. agricultural reservoirs, pumping stations, diversions, culverts and groundwater wells were grouped and networked within each subbasin and networked between subbasins including municipal and industrial water supplies. To prepare the inflows to agricultural reservoirs and multipurpose dams, the Soil and Water Assessment Tool (SWAT) was calibrated using 6 years (2005-2010) observed dam inflow and storage data. By MODSIM run for 8 years from 2004 to 2011, the agricultural water shortage had occurred during the drought years of 2006, 2008, and 2009. The agricultural water shortage could be calculated as 282 $10^6m^3$, 286 $10^6m^3$, and 329 $10^6m^3$ respectively.

A Study on Model Test for Spilway of Fill Dam (Fill Dam의 방수로모형실험에 관한 고찰)

  • 강병익
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.4
    • /
    • pp.2090-2123
    • /
    • 1970
  • This paper is a report on the research of experimental model test of Andong Fill Dam, which has been planned by the Government of Korea as a project, of its over-flowing capacity in spillway, creation of minus pressure and structure of anti-water impulse in over-flow weir. Andong Fill Dam is one of the project of master development plant for water resources, locating at Nakdong River side of Korea, and is aimed to have a multi-purpose dam for flood-control, irrigation, water power, urban and industrial water supply. This dam is planned to erect in fill-dam type due to the improper soil foundation and condition for concrete dam. The refore for the proper and advantageous points, this is designed as center core fill dam. By a model minimized of Andong Fill Dam, held an experimental model test on water quentity of reservir, discharges of overflow part, low pressure and anti-water impulse of overflow part, which was conducted an experiment by flowing aspects through each section of spillway to find the changes of water pressure and that of water level, and corrected the section of each part in order to conduct a check on the creation of minus pressure not to be over acted to the allowable bundary of the section structure; and for the prevention of concentated scouring at the down stream side of flow.

  • PDF

A Study for Sedimentation in Reservoir -on district of Chin Young- (저수지의 퇴사에 관한 연구 -진양지구를 중심으로-)

  • 류시창;민병향
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.3
    • /
    • pp.3840-3847
    • /
    • 1975
  • With 30 excisting reservoirs in the Chin-Young area, the Sedimentation of the reservoirs has been calculated by comparing the present capacity with the original value, which revealed its reduced reservoir capacity. The reservoirs has a total drainage area of 3l4l ha, with a total capacity of 43.23 ha-m, and are short of water supply due to reduction of reservoir capacity, Annual sedimentation in the reservoir is relation to the drainage area, the mean of annual rainfall, and the slop of drainage area. The results of obtained from the investigation are summarized as follows: (1) A Sediment deposition rate is high, being about 7.03㎥/ha of drainage area, and resulting in the overage decrease of reservoir capacity by 16.1%. This high rate of deposition coule be mainly attributed to the serve denudation of forests due to disorderly cuttings of tree. (2) An average unit storageof 116mm as the time of initial construction is decreased to 95.6mm at present. This phenomena cause a greater storage of irrigation water, sinceit was assumed that original storage quantity itself was already in short. (3) A sediment deposition rate as a relation to the capacity of unit drainge area is as follow: Qs=1.27(C/A)0.6 and standard deviation is 185.5㎥/$\textrm{km}^2$/year. (4) A sediment deposition rate as a relation to the mean of annual rainfall is as follow: Qs=21.9p10.5 and the standard deviation is 364.8㎥/$\textrm{km}^2$/year. (5) A sediment deposition rate as a relation to the mean slop of drainage area is follow: Qs=39.6S0.75 and the standard deviation is 190.2㎥/$\textrm{km}^2$/year (6) Asediment deposition rate as a relation to the drainage area, mean of rainfall, mean of slope of drainage area is: Log Qs=0.197+0.108LogA-6.72LogP+2.20LogS and the standard deviation is 92.4㎥/$\textrm{km}^2$/year

  • PDF

Growth and Quality of Two Melon Cultivars in Hydroponics Affected by Mixing Ratio of Coir Substrate and Different Irrigation Amount on Spring Season (멜론 봄 재배 시 코이어 배지경에서 배지 혼합 비율과 급액량에 따른 생육 및 품질)

  • Choi, Su hyun;Lim, Mi Yeong;Choi, Gyeong Lee;Kim, So Hui;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.376-387
    • /
    • 2019
  • Melons are mostly grown in soil, but it is susceptible to damage due to injury by continuous cropping such as Fusarium wilt and root rot. Hydroponic cultivation system can overcome the disadvantages of soil cultivation with precise nutrition management and a clean environment. When using the coir substrate, the most environmentally friendly organic substrate used for hydroponics, it is analyzed how the growth and fruit quality of the melon depends on the ratio of chips and dust and the amount of irrigation. The purpose of this study was to provide the basic data of melon hydroponics when cultivated in spring. The two types of the coir substrates used in the experiments were chip and dust ratios of 3 :7 and 5 : 5 respectively. The substrate with high dust ratios had excellent physical characteristics, such as container capacity and total porosity, and the drainage EC level showed a high value of $3.0-6.8dS{\cdot}m^{-1}$. When the amount of irrigation is provided based on the drainage rate, the group provided the nutrient solution on the basis of 10% drainage supplied 91 L per plant, which was reduced by about 30% compared to the group with the highest water supply. In addition, the total drainage showed less than 10 L per plant with a minimum water supply and was reduced by 30 - 70% in substrate with a high dust rates. In substrate with high water supply and high dust ratio, leaf growth and fruit enlargement were good, and the soluble solids content varies greatly from cultivar to cultivar. If you provided the amount of irrigation based on 10% drainage rate, the fruit weight will be decreased, but the amount of irrigation can be reduced. Therefore, it is considered that managing the water & nutrient properly taking into account the characteristics of coir substrate and cultivar can produce melon of uniform quality using hydroponics.

Water yield estimation of the Bagmati basin of Nepal using GIS based InVEST model (GIS기반 InVEST모형을 이용한 네팔 Bagmati유역의 물생산량 산정)

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Jung, Younghun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.637-645
    • /
    • 2019
  • Among various ecosystem services provided by the basin, this study deals with water yield (WY) estimation in the Bagmati basin of Nepal. Maps of where water used for different facilities like water supply, irrigation, hydropower etc. are generated helps planning and management of facilities. These maps also help to avoid unintended impacts on provision and production of services. Several studies have focused on the provision of ecosystem services (ES) on the basin. Most of the studies have are primarily focused on carbon storage and drinking water supply. Meanwhile, none of the studies has specifically highlighted water yield distribution on sub-basin scale and as per land use types in the Bagmati basin of Nepal. Thus, this study was originated with an aim to compute the total WY of the basin along with computation on a sub-basin scale and to study the WY capacity of different landuse types of the basin. For the study, InVEST water yield model, a popular model for ecosystem service assessment based on Budyko hydrological method is used along with ArcGIS. The result shows water yield per hectare is highest on sub-basin 5 ($15216.32m^3/ha$) and lowest on sub-basin 6 ($10847.15m^3/ha$). Likewise, built-up landuse has highest WY capacity followed by grassland and agricultural area. The sub-basin wise and LULC specific WY estimations are expected to provide scenarios for development of interrelated services on local scales. Also, these estimations are expected to promote sustainable land use policies and interrelated water management services.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.