• 제목/요약/키워드: irrigation water

검색결과 1,700건 처리시간 0.026초

Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator

  • Kim, Minyoung;Kim, Seounghee;Kim, Youngjin;Choi, Yonghun;Seo, Myungchul
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.499-504
    • /
    • 2015
  • Decision making by farmers regarding irrigation is critical for crop production. Therefore, the precision irrigation technique is very important to improve crop quality and yield. Recently, much attention has been given to remote sensing of crop canopy temperature as a crop water-stress indicator, because it is a scientifically based and easily applicable method even at field scales. This study monitored a series of time-variant canopy temperature of cucumber under three different irrigation treatments: under-irrigation (control), optimal-irrigation, and over-irrigation. The difference between canopy temperature ($T_c$) and air temperature ($T_a$), $T_c-T_a$, was calculated as an indicator of cucumber water stress. Vapor pressure deficit (VPD) was evaluated to define water stress on the basis of the temperature difference between leaf and air. The values of $T_c-T_a$ was negatively related to VPD; further, cucumber growth in the under- and over-irrigated fields showed water stress, in contrast to that grown in the optimally irrigated field. Thus, thermal infrared measurements could be useful for evaluating crop water status and play an important role in irrigation scheduling of agricultural crops.

관개지구의 관행 물관리를 고려한 저수지 용수공급량 추정 (Estimation of Amounts of Water Release from Reservoirs Considering Customary Irrigation Water Management Practices in Paddy-Field Districts)

  • 강민구;오승태;김진택
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.1-9
    • /
    • 2014
  • The DIROM (Daily Irrigation Reservoir Operation Model) was modified to estimate amounts of water release from reservoirs, considering customary irrigation water management practices, such as water supply for puddling and transplanting paddy rice from seeding beds and mid-season drainage. The applicability of the modified model was investigated by simulating amounts of water release from three study reservoirs: Hwamae, Ogi, and Doya Reservoirs. In terms of annual amounts of water release, the relative errors between the observed and simulated values in 2012 and 2013 ranged -26.20 % to 10.28 % and 4.90 % to 30.06 %, respectively; in case of reservoir water levels, the RMSE values ranged 0.45 m to 1.34 m and 0.40 m to 1.27 m, respectively. Also, it was revealed that the model provided better simulation results for monthly water releases than the original model. In addition, the model presented better performance in simulating 10-day amounts of water release from April to June. However, the model had still significant errors in the simulation results from July to September because the reservoirs were practically operated to adapt to water management circumstances. Finally, it is concluded that the modified DIROM can estimate the amounts of water release from reservoirs, reflecting irrigation water management customs in paddy-field districts. To achieve higher prediction accuracy of the model, it is necessary to incorporate practical reservoir operation rules into the model.

간척답의 관개용수량 산정을 위한 제염시험연구 (Experimental Study for Irrigation Water Requrements in the Reclaimed Paddy Field)

  • 손재권;구자웅;최진규;송재도
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.192-199
    • /
    • 1999
  • In order to make the reasonable irrigation planin the reclaimed paddy fields, the estimation of irrigation water requirements by soil textures and water management methods for the normal growth of crops is very important. This study was carried out to determine leaching water requirements before cultivating crops. For the purposes of this study, the physical and chemical properties of soil sampels used in the desalinication experiments were analyzed and change of salinity by supplying water and leaching water were investigated in the experimental field with lysimeters.

  • PDF

관개조직의 일별 모의 조작 (Simulating Daily Operational Characteristics of Irrigation)

  • 이남호;정하우;박승우
    • 한국농공학회지
    • /
    • 제32권3호
    • /
    • pp.67-78
    • /
    • 1990
  • A decision support system, Daily Irrigation Network Operation Simulation model (DINOPS) was developed that can adequately describe the physical behavior of an irrigation system. The model is to depict the physical features of complex water allocation schemes of the irrigation system and to simulate the response of the system to different irrigation schemes. The model was validated on the Banweol irrigation district by comparing the simulated canal discharges and paddy water levels with the field data. The operation of the DINOPS model was demonstrated on the irrigation district where several irrigation management practices were evaluated with computing irrigation efficiencies and rainfall effectiveness respectively. The model sensitivity with respect to heights of bund and block diversion rates were analyzed and discussed.

  • PDF

관개취약성 평가모형 및 군집분석을 활용한 용수공급 위험도 평가 (Water Supply Risk Assessment of Agricultural Reservoirs using Irrigation Vulnerability Model and Cluster Analysis)

  • 남원호;김태곤;홍은미
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.59-67
    • /
    • 2015
  • Because reservoirs that supply irrigation water play an important role in water resource management, it is necessary to evaluate the vulnerability of this particular water supply resource. The purpose of this study is to provide water supply risk maps of agricultural reservoirs in South Korea using irrigation vulnerability model and cluster analysis. To quantify water supply risk, irrigation vulnerability indices are estimated to evaluate the performance of the water supply on the agricultural reservoir system using a probability theory and reliability analysis. First, the irrigation vulnerability probabilities of 1,346 reservoirs managed by Korea Rural Community Corporation (KRC) were analyzed using meteorological data on 54 meteorological stations over the past 30 years (1981-2010). Second, using the K-mean method of non-hierarchical cluster analysis and pre-simulation approach, cluster analysis was applied to classify into three groups for characterizing irrigation vulnerability in reservoirs. The morphology index, watershed area, irrigated area, and ratio between watershed and irrigated area are selected as the clustering analysis parameters. It is suggested that the water supply risk map be utilized as a basis for the establishment of risk management measures, and could provide effective information for a reasonable decision making on drought risk mitigation.

Estimating Irrigation Requirement for Rice Cropping under Flooding Condition using BUDGET Model

  • Seo, Mi-jin;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae
    • 한국토양비료학회지
    • /
    • 제48권4호
    • /
    • pp.246-254
    • /
    • 2015
  • This study explored the effect of rainfall pattern and soil characteristics on water management in rice paddy fields, using a soil water balance model, BUDGET. In two sites with different soil textural group, coarse loamy soil (Gangseo series) and fine soil (Hwadong series), respectively, we have monitored daily decrease of water depth, percolation rate, and groundwater table. The observed evapotranspiration (ET) was obtained from differences between water depth decrease and percolation rate. The root mean square difference values between observed and BUDGET-estimated ET ranged between 10% and 20% of the average observed ET. This is comparable to the measurement uncertainty, suggesting that the BUDGET model can provide reliable ET estimation for rice fields. In BUDGET model of this study, irrigation requirement was determined as minimum water need for maintaining water-saturated soil surface, assuming 100 mm of bund height and no lateral loss of water. The model results showed different water balance and irrigation requirement with the different soil profile and indicated that minimum percolation rate by plow pan could determine the irrigation requirement of rice paddy field. For the condition of different rainfall distribution, the results presented different irrigation period and amounts, representing the importance of securing water for irrigation against different rainfall pattern.

농업용 저수지의 이·치수 기능을 고려한 홍수기 제한수위 설정 기법 개발 (Determination of Flood-limited Water Levels of Agricultural Reservoirs Considering Irrigation and Flood Control)

  • 김지혜;곽지혜;전상민;이성학;강문성
    • 한국농공학회논문집
    • /
    • 제65권6호
    • /
    • pp.23-35
    • /
    • 2023
  • In this study, we developed a method to determine the flood-limited water levels of agricultural reservoirs, considering both their irrigation and flood control functions. Irrigation safety and flood safety indices were defined to be applied to various reservoirs, allowing for a comprehensive assessment of the irrigation and flood control properties. Seasonal flood-limited water level scenarios were established to represent the temporal characteristics of rainfall and agricultural water supply and the safety indices were analyzed according to these scenarios. The optimal scenarios were derived using a schematic solution based on Pareto front analysis. The method was applied to Obong, Yedang, and Myogok reservoirs, and the results showed that the characteristics of each reservoir were well represented in the safety indices. The irrigation safety of Obong reservoir was found to be significantly influenced by the late-stage flood-limited water level, while those of Yedang and Myogok reservoir were primarily affected by the early and mid-stage flood-limited water levels. The values of irrigation safety and flood safety indices for each scenario were plotted as points on the coordinate plane, and the optimal flood-limited water levels were selected from the Pareto front. The storage ratio of the optimal flood-limited water levels for the early, mid, and late stages were 65-70%, 70%, and 75% for Obong reservoir, 75%, 70-75%, and 65-70% for Yedang reservoir, and 75-80%, 70%, and 50% for Myogok reservoir. We expect that the method developed in this study will facilitate efficient reservoir operations.

무선 인터넷 기반의 급액관리 시스템 (Irrigation System Based on Wireless Internet)

  • 조태경
    • 전기학회논문지P
    • /
    • 제58권4호
    • /
    • pp.422-426
    • /
    • 2009
  • The key point on water culture is the precise irrigation control according to the growth condition of growing plant. And most existing irrigation controllers are operated independently. So, the manager must be resided at hydroponic farm. In this paper, we design the irrigation control system based on wireless Internet that can be providing various control functions according to the growth condition of growing plant by using the cellular phone.

배추의 최적급수계획 연구 (A Study on the Optimal Irrigation Scheduling of Chinese cabbage)

  • 정하우;박상현
    • 한국농공학회지
    • /
    • 제31권4호
    • /
    • pp.50-58
    • /
    • 1989
  • An approach to irrigation scheduling for chinese caggage is presented, and a crop yield response function to soil moisure is derived from irrigation experiments, based on a root- zone water balance method. The paper concludes that crop yield can be estimated by allowable depletion and actual evapotranspiration in 3 cropping stages, and presents the optimal allowalbe depletion, irriga- tion frequency and the amount of irrigation water to get the maximum crop yield and opti- mal irrigation policy.

  • PDF

광역논에서의 질소와 인의 오염부하량 특성 (Characteristics of Nitrogen and Phosphorous Loadings from a Paddy Field Area)

  • 김진수;오승영;김규성
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.527-532
    • /
    • 1998
  • The inflow and outflow loads of T-N and T-P from a paddy field area during the irrigation period were investigated. For the concentration of T-N and T-P, surface water in paddies showed highest among irrigation water, drainage water and percolation water. For T-N, the average concentration of drainage water is higher than that of irrigation water before middle of June but is lower since. It is shown that the L(load)-Q (discharge) equation of T-N has high correlation for irrigation water, but the L-Q equation of T-P has high correlation for drainage water.

  • PDF