• Title/Summary/Keyword: irrigation supply

Search Result 329, Processing Time 0.031 seconds

Assessment of Water Distribution and Irrigation Efficiency in Agricultural Reservoirs using SWMM Model (SWMM 모형을 이용한 농업용 저수지 용수분배 모의 및 관개효율 평가)

  • Shin, Ji-Hyeon;Nam, Won-Ho;Bang, Na-Kyoung;Kim, Han-Joong;An, Hyun-Uk;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.3
    • /
    • pp.1-13
    • /
    • 2020
  • The management of agricultural water can be divided into management of agricultural infrastructure and operation to determine the timing and quantity of water supply. The target of water management is classified as water-supply facilities, such as reservoirs, irrigation water supply, sluice gate control, and farmland. In the case of agricultural drought, there is a need for water supply capacity in reservoirs and for drought assessment in paddy fields that receive water from reservoirs. Therefore, it is necessary to analyze the water supply amount from intake capacity to irrigation canal network. The analysis of the irrigation canal network should be considered for efficient operation and planning concerning optimized irrigation and water allocation. In this study, we applied a hydraulic analysis model for agricultural irrigation networks by adding the functions of irrigation canal network analysis using the SWMM (Storm Water Management Model) module and actual irrigation water supply log data from May to August during 2015-2019 years in Sinsong reservoir. The irrigation satisfaction of ponding depth in paddy fields was analyzed through the ratio of the number of days the target ponding depth was reached for each fields. This hydraulic model can assist with accurate irrigation scheduling based on its simulation results. The results of evaluating the irrigation efficiency of water supply can be used for efficient water distribution and management during the drought events.

Water Supply Risk Assessment of Agricultural Reservoirs using Irrigation Vulnerability Model and Cluster Analysis (관개취약성 평가모형 및 군집분석을 활용한 용수공급 위험도 평가)

  • Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Hayes, Michael J.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.59-67
    • /
    • 2015
  • Because reservoirs that supply irrigation water play an important role in water resource management, it is necessary to evaluate the vulnerability of this particular water supply resource. The purpose of this study is to provide water supply risk maps of agricultural reservoirs in South Korea using irrigation vulnerability model and cluster analysis. To quantify water supply risk, irrigation vulnerability indices are estimated to evaluate the performance of the water supply on the agricultural reservoir system using a probability theory and reliability analysis. First, the irrigation vulnerability probabilities of 1,346 reservoirs managed by Korea Rural Community Corporation (KRC) were analyzed using meteorological data on 54 meteorological stations over the past 30 years (1981-2010). Second, using the K-mean method of non-hierarchical cluster analysis and pre-simulation approach, cluster analysis was applied to classify into three groups for characterizing irrigation vulnerability in reservoirs. The morphology index, watershed area, irrigated area, and ratio between watershed and irrigated area are selected as the clustering analysis parameters. It is suggested that the water supply risk map be utilized as a basis for the establishment of risk management measures, and could provide effective information for a reasonable decision making on drought risk mitigation.

Rural Water Supply from the Irrigation Reservoir

  • 김대철;박성기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.E
    • /
    • pp.47-54
    • /
    • 1995
  • Irrigation water has been mainly used for paddy rice. Irrigated paddy land tends to be recently converted to land for green house, farm house, and rural-industrial complex. Consequently, demand of water for crops, domestic & industrial, rural recreations, small-scaled hydropower, livestocks, and environment in the rural area, so called rural water, is rapidly increasing. In order to supply rural water, water in the existing irrigation reservoir could be enlarged by repairment of irrigation canal and reinforcement of irrigation reservoir, and be saved by the operation rule curve, utilization of dead water, and balanced storage management.

  • PDF

Surface Drainage Simulation Model for Irrigation Districts Composed of Paddy and Protected Cultivation (복합영농 관개지구의 배수량 모의 모형의 개발)

  • Song, Jung-Hun;Kang, Moon-Seong;Song, Inhong;Hwang, Soon-Ho;Park, Jihoon;Ahn, Ji-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.63-73
    • /
    • 2013
  • The objectives of this study were to develop a hydrologic simulation model to estimate surface drainage for irrigation districts consisting of paddy and protected cultivation, and to evaluate the applicability of the developed model. The model consists of three sub-models; agricultural supply, paddy block drainage, and protected cultivation runoff. The model simulates daily total drainage as the sum of paddy field drainage, irrigation canal drainage, and protected cultivation runoff at the outlets of the irrigation districts. The agricultural supply sub-model was formulated considering crop water requirement for growing seasons and agricultural water management loss. Agricultural supply was calculated for use as input data for the paddy block sub-model. The paddy block drainage sub-model simulates paddy field drainage based on water balance, and irrigation canal drainage as a fraction of agricultural supply. Protected cultivation runoff is calculated based on NRCS (Natural Resources Conservation Service) curve number method. The Idong reservoir irrigation district was selected for surface drainage monitoring and model verification. The parameters of model were calibrated using a trial and error technique, and validated with the measured data from the study site. The model can be a useful tool to estimate surface drainage for irrigated districts consisting of paddy and protected cultivation.

Development of Operation Rules in Agricultural Reservoirs using Real-Time Water Level and Irrigation Vulnerability Index (실시간 저수위 및 용수공급 취약성 지표를 활용한 농업용 저수지 운영 기준 개발)

  • Nam, Won Ho;Choi, Jin Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.6
    • /
    • pp.77-85
    • /
    • 2013
  • The efficient operation and management strategies of reservoirs in irrigation periods of drought events are an essential element for drought planning and countermeasure. Korea Rural Community Corporation has developed the real-time water level observation system of agricultural reservoirs to efficiently operate reservoirs, however, it is not possible to predict drought conditions, and only provides information of current situation. Hence, it is necessary to evaluate accurate irrigation vulnerability and efficiently reservoir operation rules using current water level. In this paper, the improvement methods of reservoir operation planning were developed with water supply vulnerability characteristic curves comparing to automatic water gauge at agricultural reservoirs. The 11 reservoirs were simulated applying the reservoir operation rules which was determined by irrigation vulnerability characteristic curves criteria and real time water level, and evaluated water supply situation in 2012 year. The analysis of results can be identified probabilistic possibility of water supply failures compared with the existing reservoir operation criteria. These results of efficient reservoir operation rules can be achieved enable irrigation planners to optimally manage available water resources for decision making, and contributed to maintain the water supply according to demand strategy for agricultural reservoirs management.

Assessment of Irrigation Efficiencies using Smarter Water Management (농촌수자원 스마트 물관리를 활용한 농업용수의 관개효율 평가)

  • Nam, Won Ho;Choi, Jin Yong;Hong, Eun Mi;Kim, Jin Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.45-53
    • /
    • 2013
  • Efficient water operation and management of an irrigation system plays an important element in the sustainability of irrigated agriculture. An agricultural water is delivered in many open canals of irrigation delivery system by reservoirs. The poor water distribution and management in an irrigation system is a major factor leading to low water efficiency. It is necessary to compare the estimated irrigation demands with the actual water supplies for decision making to maintain the water supply according to demand strategy. Smarter water management, new technologies and improvement of water management system, is essential to solve the problem of water efficiency and availability. In this paper, the irrigation efficiencies according to water delivery performance indicator were measured with automatic water gauge at irrigation canals, and calculated from spatial and temporal distribution of water supply for the lack of planning in water delivery. The analysis of results are obtain an insight into possible improvement methods to develop canal water management policies that enable irrigation planners to optimally manage scarce available water resources.

Evaluation of Water Supply Stability for Upland Crop in Reservoir Irrigation Districts Using Resilience Indexes (레질리언스 지표를 이용한 저수지 수혜구역의 전작농지 용수공급 안정성 평가)

  • Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Shin, Hyungjin;Chung, Soo;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.25-37
    • /
    • 2024
  • As the agricultural land use shifts from paddy to upland, ensuring reservoir water supply stability for upland crop irrigation becomes essential. The objectives of this study were to estimate the irrigation water requirements considering the upland irrigation scenario and to evaluate the reliability of the water supply from the agricultural reservoir using resilience indexes. Two study sites, Sinheung and Hwajeong, were selected, and soybean and red peppers, the most water-intensive crops, were selected as study crops, respectively. For the irrigation scenario, two irrigation methods of traditional scheduling (which irrigates all sites at once) and rotational scheduling (which distributes irrigation by districts), along with the upland conversion rate, were considered. The net irrigation requirement was estimated through a water balance analysis. The stability of the reservoir was evaluated using resilience indexes based on the simulated 10-years reservoir water levels and drought criterion. Overall, the water supply of the reservoir was evaluated as stable during the simulated 10 years, except for the one year. Compared to the two irrigation methods, rotational scheduling resulted in lower irrigation water usage in both sites, with reductions of 1.6%, and 0.3%, respectively. As the upland conversion rate increases, the water deficit could be intensified in Hwajeong with a conversion rate exceeding 50%, showing the number of deficit(ND) over the one and a rapid increase in the deficit ratio(DR). It was confirmed that the reservoir operation criteria can be enhanced by incorporating resilience indicators along with crop growth information, thus, this will be a further study.

Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies (SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Yoon, Kwangsik;Choi, Dongho;Kim, Yongseok;Ryu, Jichul;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.

Water Quality Improvement in the River through Reformation of Irrigation Water Supply Systems (관개용수 공급체계 변경을 통한 하천의 수질개선)

  • Lee, Kwang-Ya;Kim, Hae-Do;Lee, Jong-Nam;Park, Jong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.540-545
    • /
    • 2006
  • The objective of the study is to assess the water quality improvement resulted from the rearrangement of the irrigation water supply systems at Mankyeong River and Ansung Chun basin. There is a mixed type of watershed composed of urban and rural areas in the region. The water intake facilities for agricultural use such as reservoir, weir and pumping station are generally located at upstream river where the water quality maintains relatively clean. However, this study focuses on moving the water intake to downstream and rearranging the irrigation water supply system, then investigating how effective they are for water quality improvement in the river. When the water intake is moved downstream, the stream flow is increased as much as the amount of irrigation water that is to be taken upstream. The augmented flow which is frequently referred to as environmental flow can function as dilution water for improving the quality of polluted water that is originated from the wastewater in tributaries.

  • PDF

Monitoring of Irrigation Water Supply and Water Quality from a Pumping Station (양수장의 농업용수 공급량 및 수질 모니터링)

  • Choi Jin-kyu;Son Jae-gwon;Koo Ja-woong;Yoon Kwang-sik;Kim Young-ju
    • KCID journal
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • The irrigation water supply and water quality from a pumping station were surveyed. Guiseok pumping station was selected as a monitoring site. Water level in irrigation canal was monitored continuously and water samples were taken and analyzed, periodical

  • PDF