• 제목/요약/키워드: irrigation reservoir

검색결과 315건 처리시간 0.028초

인공식물섬을 이용한 저수지 수질개선 (Water quality improvement by the flating islands in a reservoir)

  • 박병흔;권순국;장정렬
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.645-650
    • /
    • 1999
  • Three floating islands have been constructed for water quality improvement for a polluted irrigation reservoir. Phragmites australis was considered as the suitable aquatic macrophyte of the floating island. From April to August in 1999, the net primary productivity of Phragmites australis was 3,530gDM/㎡. Uptake rates of nitrogen and phoshorous by Phragmites australis planted in the floating island could be estimated to 10.2kg/d/ha and 0.8kg/d/ha, respectively. The floating islands worked well as a habitat of fish and prawns. Therefore, the floating islands could be evaluated a good measure ofwater quality improvement for irrigation reservoir.

  • PDF

농업용저수지 수질인자간 상관성 및 획귀분석 (Correlations and Regression Analysis Between Reservoir Water Quality Parameters)

  • 최은희;박영석
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.25-32
    • /
    • 2011
  • In order to effectively manage the reservoir, reservoir water quality management should be based on physicochemical and configurational characteristics. In this research, correlation between factors affecting the reservoir water quality was examined. Chl-a and COD shows the highest positive correlation. Chl-a and T-P also has a high positive correlation, however Chl-a and T-N show lower correlation relatively. Even though T-N is an important factor for phytoplankton growth which increase Chl-a concentration, corelation of Ch1-a and T-N shows that enough nitrogen in the reservoir isn't no longer limiting factor. The age of reservoir can cause of increasing COD and SS. Embankment height and elevation of reservoirs shows strong negative correlation to water quality. That means reservoir which is higher embankment height and locate in higher elevations is less contaminated. Regression expression was derived with Chl-a and water quality parameters, and height of reservoir. Finally Chl-a was simulated using regression expression and it was a good approach to predict the Chl-a concentration.

  • PDF

Prediction of reservoir sedimentation: A case study of Pleikrong Reservoir

  • Thu Hien Nguyen;XuanKhanh Do
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.36-36
    • /
    • 2023
  • Sedimentation is a natural process that occurs in all reservoirs. Sedimentation problem reduces the storage capacity of the reservoir and limits its ability to provide water for various uses, such as irrigation, hydropower generation, and flood control. Therefore, predicting reservoir sedimentation is important for ensuring the efficient operation and sedimentation management of a reservoir and . In this study, the HECRAS model was applied to predict longitudinal distribution of deposited sediment in the Pleikrong reservoir to 2050. Different scenarios was considered: (i) no climate change, (ii) climate change (under two emissions scenarios, RCP4.5 and RCP8.5), and (iii) climate change and land use change (followed land use planning of the watershed). The computation results with different scenarios were analyses and compared. The results show that the reservoir reduced storage volume's rate and sedimentation proceed toward to the dam in the case of climate change is faster than in the case of no climate change. Analyses also indicates that following the land used planning could also improve the long-term problem of the reservoir sedimentation. The outcomes of this study will be helpful for a sustainable plan of sediment management for the Pleikrong reservoir.

  • PDF

저수지 관리 관행을 반영한 농업용 저수지 저수율 추정 (Estimation of Agricultural Reservoir Water Storage Based on Empirical Method)

  • 강한솔;안현욱;남원호;이광야
    • 한국농공학회논문집
    • /
    • 제61권5호
    • /
    • pp.1-10
    • /
    • 2019
  • Due to the climate change the drought had been occurring more frequently in recent two decades as compared to the previous years. The change in the pattern and frequency of the rainfall have a direct effect on the farming sector; therefore, the quantitative estimation of water supply is necessary for efficient agricultural water reservoir management. In past researches, there had been several studies conducted in estimation and evaluation of water supply based on the irrigational water requirement. However, some researches had shown significant differences between the theoretical and observed data based on this requirement. Thus, this study aims to propose an approach in estimating reservoir rate based on empirical method that utilized observed reservoir rate data. The result of these two methods in comparison with the previous one is seen to be more fitted for both R2 and RMSE with the observed reservoir rate. Among these procedures, the method that considers the drought year data shows more fitted outcomes. In addition, this new method was verified using 15-year (2002 to 2006) linear regression equation and then compare the preceeding 3-year (1999 to 2001) data to the theoretical method. The result using linear regression equation is also perceived to be more closely fitted to the observed reservoir rate data than the one based on theoretical irrigation water requirement. The new method developed in this research can therefore be used to provide more suitable supply data, and can contribute to effectively managing the reservoir operation in the country.

이상강우에 대비한 성주댐의 홍수조절 능력 분석 (Evaluation of Flood Control Capacity for Seongju Dam against Extreme Floods)

  • 권순국;한건연;서승덕;최혁준
    • 한국농공학회지
    • /
    • 제45권6호
    • /
    • pp.109-118
    • /
    • 2003
  • As a fundamental research to establish a safety operation plan for irrigation dams, this study presents hydrologic analysis conducted in Sungju Dam watershed based on various rainfall data. Especially those reservoirs without flood control feature are widely exposed to the risk of flooding, a safe and optimized operation program need to be improved against arbitrary flooding. In this study, reservoir routing program was developed and simulated for reservoir runoff estimation using WMS hydrology model. The model simulated the variations of reservoir elevation under the condition of open or closed emergency gate. In case of closed emergency gate, water surface elevation was given as 193.15 m, and this value exceeds the dam crest height by 1.65 m. When the emergency gate is open, the increment of water surface elevation is given as 192.01 m, and this value exceeds dam crest height by 0.57 m. As an alternative plan, dam height increase can be considered for flood control under the PMP (Probable Maximum Precipitation) condition. Since the dam size is relatively small compare to the watershed area, sound protection can be expected from the latter option rather than emergency gate installation.

농업용저수지의 녹조제어를 위한 수환경 특성과 포식성 천적생물의 분리 및 효과분석 (Property of Water Environment and Evaluation of Zooplankton as Predators for the Control of Algal Bloom in the Agricultural Reservoir)

  • 남귀숙;송영희;이의행;홍대벽;한명수
    • 한국관개배수논문집
    • /
    • 제18권1호
    • /
    • pp.33-43
    • /
    • 2011
  • Jundae reservoir has basin area of 234ha, average depth of 3.77m and total storage of $619{\times}10^3m^3$, and is located in Dangin-gun, Chungcheongnam-do. The water quality of Jundae reservoir exceeded the IV grade of water quality standard as available for irrigation water in COD, TN, TP, Chl-a. COD and Chl-a were higher in spring season, because the algal bloom by phytoplankton increased. And the algal blooms in October by inflow non-point pollution during summer rainy season. The most dominant zooplankton was rotifers during study period at all stations. Dominant species were Keratella cochlearis, Polyarthra spp., and Trichocerca spp. We successfully established 2 isolated clone cultures as predator. One is Rotifer, Euchlanis sp. and another is cladocerans, Bosmina sp. To test the removal rate of 2 cultures against Microcystis aeruginosa, we inoculated Euchlanis sp. and Bosmina sp. separately when the abundance reached at $1.0{\times}10^6$cells/ml. Euchlanis sp. removed M. aeruginosa around 98.9% and Bosmina sp. removed it around 98.4%. They are useful grazers for controling algae blooms, Euchlanis sp. and Bosmina sp. feeding on M. aeruginosa highly.

  • PDF

관개취약성 평가모형 및 군집분석을 활용한 용수공급 위험도 평가 (Water Supply Risk Assessment of Agricultural Reservoirs using Irrigation Vulnerability Model and Cluster Analysis)

  • 남원호;김태곤;홍은미
    • 한국농공학회논문집
    • /
    • 제57권1호
    • /
    • pp.59-67
    • /
    • 2015
  • Because reservoirs that supply irrigation water play an important role in water resource management, it is necessary to evaluate the vulnerability of this particular water supply resource. The purpose of this study is to provide water supply risk maps of agricultural reservoirs in South Korea using irrigation vulnerability model and cluster analysis. To quantify water supply risk, irrigation vulnerability indices are estimated to evaluate the performance of the water supply on the agricultural reservoir system using a probability theory and reliability analysis. First, the irrigation vulnerability probabilities of 1,346 reservoirs managed by Korea Rural Community Corporation (KRC) were analyzed using meteorological data on 54 meteorological stations over the past 30 years (1981-2010). Second, using the K-mean method of non-hierarchical cluster analysis and pre-simulation approach, cluster analysis was applied to classify into three groups for characterizing irrigation vulnerability in reservoirs. The morphology index, watershed area, irrigated area, and ratio between watershed and irrigated area are selected as the clustering analysis parameters. It is suggested that the water supply risk map be utilized as a basis for the establishment of risk management measures, and could provide effective information for a reasonable decision making on drought risk mitigation.

관개수온과 벼의 냉수피해 (Irrigation water temperature and cold water damage of paddy)

  • 정상옥;오창준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.14-21
    • /
    • 1998
  • In 1996, a cold-water damage occured in the paddy field at downstream of the Unmoon dam. To study the cause and the preventive measures of the cold-water damage a field study was performed during the growing season of 1997. Field measurements such as water temperatures at reservoir, irrigation canal and in the paddy field were made. As a result, there was no cold-water damage due to the right irrigation water management practice in 1997. The cold-water damage is passible to happen, however, and the preventive measures were provided.

  • PDF

관개용(灌漑用) 저수지(貯水池)의 연평균퇴사량(年平均堆砂量)과 저수용량(貯水容量) 감소율(減少率)의 산정(算定) (Estimation of Silting Load and Capacity Loss Rate of Irrigation Reservoirs)

  • 윤용남
    • 대한토목학회논문집
    • /
    • 제1권1호
    • /
    • pp.69-76
    • /
    • 1981
  • 현재(現在) 실무(實務)에 사용(使用)되고 있는 저수지내(貯水池內)에 퇴사량(堆砂量)의 추정방법(推定方法)에 대하여 광범위하게 조사(調査) 비교(比較)하였으며 국내(國內) 113개(個) 관개용(灌漑用) 저수지(貯水池)의 퇴사실측자료(堆砂實測資料)를 사용하여 저수지(貯水池) 퇴사량(堆砂量)과 유역면적(流域面積) 및 저수지(貯水池)의 토사포착효율간(土砂捕捉效率間)의 상관관계(相關關係)를 맺는 다회귀모형(多回歸模型)을 제안(提案)하였다. 제안(提案)된 모형(模型)의 적합성(適合性)을 실측자료(實測資料)로부터 증명하였으며 저수지내(貯水池內)로의 연비유사량(年比流砂量)을 유역면적(流域面積) 및 저수지(貯水池)의 토사포착효율(土砂捕捉效率)과 상관(相關)시켰다. 저수지내(貯水池內)로의 연평균퇴사율(年平均堆砂率)과 연평균저수지내용적(年平均貯水池內容積)의 변동(變動)은 저수지(貯水池)의 토사포착효율(土砂捕捉效率)에 의해 크게 좌우(左右)됨이 증명되었으며 저수지상류(貯水池上流)의 하천유로(河川流路)에 미치는 토사유출(土砂流出)의 영향을 양적(量的)으로 평가(評價)하기 위해서도 본(本) 연구(硏究)에서 제안(提案)된 퇴사량(堆砂量) 추정모형(推定模型)을 적용(適用)할 수 있음을 벽곡저수지(貯水池) 유역(流域)에 대하여 증명(證明)하였다.

  • PDF

하천관개지역 광역논에서의 영양물질의 물질수지 (Nutrient Balance in the Paddy Fields Watershed with a Source of River Water)

  • 이정범;이재용;이사굉;장정렬;장익근;김진수
    • 한국농공학회논문집
    • /
    • 제56권5호
    • /
    • pp.11-19
    • /
    • 2014
  • The objective of this research was to investigate concentration and load of nutrients such as total nitrogen (TN), nitrate nitrogen ($NO_3$-N) total phosphorous (TP), and phosphate phosphorous ($PO_4$-P) in a 23.4-ha paddy fields watershed with river water source. Water samples for irrigation water, drainage water, ponded water and groundwater were collected, and irrigation and drainage water were measured at 5~10 day intervals during normal days and at 2~6 hours intervals during three storm events. The amount of irrigation water in the study area was over 2,000 mm, which is almost identical to that in the area irrigated from a large reservoir but much more than that in the area irrigated from a pumping station. Mean flow-weighted concentrations of TN and TP in irrigation water were 2.8 and 0.15 mg/L, respectively, higher than those in the area irrigated from a large reservoir or a pumping station. The ratios of irrigation load to total inflow load for TN and TP were 88 %, and the ratios of surface outflow load to total outflow load for TN and TP were over 90 %, indicating that total nutrient load may be greatly affected by water management. The nutrient loads per area in the study area were estimated as TN 21.1 kg/ha and TP 1.1 kg/ha. Especially, the TP load per area in the study area was smaller than that in the area irrigated from a large reservoir or a pumping station. This may be because outflow load is not high likely due to sedimentation of particulate P and irrigation water load is high due to high TP concentration in irrigation water and high amount of irrigation water.