• Title/Summary/Keyword: irrigation reservoir

Search Result 317, Processing Time 0.028 seconds

Effect of biaxial stress state on seismic fragility of concrete gravity dams

  • Sen, Ufuk;Okeil, Ayman M.
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.285-296
    • /
    • 2020
  • Dams are important structures for management of water supply for irrigation or drinking, flood control, and electricity generation. In seismic regions, the structural safety of concrete gravity dams is important due to the high potential of life and economic loss if they fail. Therefore, the seismic analysis of existing dams in seismically active regions is crucial for predicting responses of dams to ground motions. In this paper, earthquake response of concrete gravity dams is investigated using the finite element (FE) method. The FE model accounts for dam-water-foundation rock interaction by considering compressible water, flexible foundation effects, and absorptive reservoir bottom materials. Several uncertainties regarding structural attributes of the dam and external actions are considered to obtain the fragility curves of the dam-water-foundation rock system. The structural uncertainties are sampled using the Latin Hypercube Sampling method. The Pine Flat Dam in the Central Valley of Fresno County, California, is selected to demonstrate the methodology for several limit states. The fragility curves for base sliding, and excessive deformation limit states are obtained by performing non-linear time history analyses. Tensile cracking including the complex state of stress that occurs in dams was also considered. Normal, Log-Normal and Weibull distribution types are considered as possible fits for fragility curves. It was found that the effect of the minimum principal stress on tensile strength is insignificant. It is also found that the probability of failure of tensile cracking is higher than that for base sliding of the dam. Furthermore, the loss of reservoir control is unlikely for a moderate earthquake.

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.

An Analysis of Environmental Water Release Patterns Considering Operation Rules in Enlarged Agricultural Reservoirs (둑높이기 농업용저수지의 운영기준에 따른 환경용수 방류패턴 분석)

  • Lee, Sang-Hyun;Yoo, Seung-Hwan;Park, Na-Young;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.51-62
    • /
    • 2013
  • The importance of environmental water has been risen in terms of river ecosystem soundness with preventing stream flow depletion in rural area, while enlarging agricultural reservoir project is conducted under the 4 main river restoration project for supplying more water to 4 main rivers. The aim of this study was to estimate the amount of environmental water release and analyze the release pattern during non-irrigation season in enlarged agricultural reservoirs. The 4 reservoirs (Dansan, Samga, Geumbong, Changpyeong) located on the upper region of Nakdong river were simulated applying the operation rule which was determined by release criteria curves. The simulated results indicated that the more environmental water could be released than the spillway release and continuous release was achieved with smaller range of fluctuation. In case of Changpyeong reservoir, average 506.0 thousand $m^3$ environmental water could be released on Feb., and it was about twice as much as the spillway release before the enlargement, and also, the 18 thousand $m^3$/day environmental water could be supplied to a stream consistently after enlargement. From the results, it was expected that the additional environmental water release will improve stream water flow during dry season in terms of quantity and quality of water.

Study on the Treatment of Contaminated Lake Water Using Micro Air Bubbles (미세기포를 이용한 오염 호소수의 정화에 관한 연구)

  • Kim, Jun-Young;Park, Chang-Won;Lee, Jong-Kyung;Chang, In-Soung
    • Journal of Environmental Science International
    • /
    • v.16 no.6
    • /
    • pp.699-706
    • /
    • 2007
  • Many lakes or irrigative reservoirs in Korea are rapidly contaminated due to the ever increasing pollutants. Although lots of treatment processes have been recommended and practiced, economical and technical improvement is currently needed. In this study, contaminated irrigation reservoir was treated using the proposed process which is consisted of fine air bubbles, coagulation and flotation. Fine bubbles, approximate diameter of 3 to $10{\mu}m$, were generated using cavitation in the pressurized tank and polyaluminum chloride was used as coagulants. This fine bubbles, coagulation and flotation effectively controlled the low density algae, for example, Chlorophyll-a was removed more than 97 %. Removal efficiency of COD, SS, T-N and T-P were 80.7%, 94.3%, 64.1 % and 92.4%, respectively. Pollutants released from the sediments was removed more than 80% of organics and 60-70 % of nutrients. Consequently, fine bubbles coagulation and flotation process could be effectively used as an alternative treatment method for the purpose of control of lake water quality.

Pseudo seismic and static stability analysis of the Torul Dam

  • Karabulut, Muhammet;Genis, Melih
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2019
  • Dams have a great importance on energy and irrigation. Dams must be evaluated statically and dynamically even after construction. For this purpose, Torul dam built between years 2000 and 2007 Harsit River in Gümüşhane province, Turkey, is selected as an application. The Torul dam has 137 m height and 322 GWh annual energy production capacity. Torul dam is a kind of concrete face rock fill dam (CFRD). In this study, static and pseudo seismic stability of Torul dam was investigated using finite element method. Torul dam model is constituted by numerical stress analysis named Phase2 which is based on finite element method. The dam was examined under 11 different water filling levels. Thirteenth stage of the numerical model is corresponding full reservoir condition which water filled up under crest line. Besides, pseudo static coefficients for dynamic condition applied to the dam in fourteenth stage of the model. Stability assessment of the Torul dam has been discussed according to the displacement throughout the dam body. For static and pseudo seismic cases, the displacements in the dam body have been compared. The total displacements of the dam according to its the empty state increase dramatically at the height of the water level of about 70 m and above. Compared to the pseudo-seismic analysis, the displacement of dam at the full reservoir condition is approximately two times as high as static analysis.

Survey of Zoonotic Trematode Metacercariae in Fish from Irrigation Canal of Togyo-jeosuji (Reservoir) in Cheorwon-gun, Gangwon-do, Republic of Korea

  • Sohn, Woon-Mok;Na, Byoung-Kuk;Cho, Shin-Hyeong;Lee, Hee Il;Ju, Jung-Won;Lee, Myoung-Ro;Lim, Eun-Joo;Son, Sung Yong;Ko, Eunmi;Choi, Jaeseok
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.4
    • /
    • pp.427-432
    • /
    • 2021
  • The infection status of zoonotic trematode metacercariae (ZTM) was investigated in total 568 freshwater fishes (19 species) from the irrigation canal of Togyo-jeosuji (Reservoir) in Cheorwon-gun, Gangwon-do, the Republic of Korea for 3 years (2018-2020). All fishes were examined using the artificial digestion method. The metacercariae of Clonorchis sinensis (CsMc) were detected in 180 (43.8%) out of 411 fish of positive species, and their infection intensity was 38 per fish infected (PFI). Especially, in 2 fish species, i.e., Pseudorasbora parva and Puntungia herzi, the prevalence was 82.1% and 31.3%, and the infection intensity with CsMc was 88 and 290 PFI, respectively. Metagonimus spp. metacercariae (MsMc) were found in 403 (74.1%) out of 544 fish of positive species, and their infection intensity was 62 PFI. In the pale chub, Zacco platypus, the prevalence of MsMc was 98.6%, and their infection intensity was 144 PFI. Centrocestus armatus metacercariae were detected in 171 (38.9%) out of 440 fish of positive species, and their infection intensity was 1,844 PFI. Echinostoma spp. metacercariae were found in 94 (19.6%) out of 479 fish of positive species, and their infection intensity was 3 PFI. Metorchis orientalis metacercariae were detected in 43 (29.3%) out of 147 fish of positive species, and their infection intensity was 4 PFI. By the present study, it has been confirmed that some species of ZTM, including CsMc and MsMc, are prevalent in fishes from the irrigation canal of Togyo-jeosuji in Cheorwon-gun, Gangwon-do, Korea.

The Characteristics of the Rural Landscape of Daesan Plain Around the Japanese Colonial Era (일제강점기 전후 대산평야 농촌경관의 형성과 변화)

  • Jeong, Jae-Hyeon;Lee, Yoo-Jick
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.1
    • /
    • pp.15-31
    • /
    • 2024
  • The study primarily aims to examine the characteristics of the transition from natural landscape to modern agricultural landscape on the Daesan plain in Dong-myeon, Changwon-si, in the lower reaches of the Nakdong River. The periods covered in the transition include the late Joseon Dynasty, the early Japanese colonial period, and the late Japanese colonial period. The study concluded the following: It was found that the Daesan Plain used to function as a hydrophilic landscape before it formed into a rural landscape. This is characterized by the various water resources in the Plain, primarily by the Nakdong River, with its back marsh tributaries, the Junam Reservoir and Jucheon. To achieve its recent form, the Daesan Plain was subjected to human trial and error. Through installation of irrigation facilities such as embankments and sluices, the irregularly-shaped wetlands were transformed into large-scale farmlands while the same irrigation facilities underwent constant renovation to permanently stabilize the rural landscape. These processes of transformation were similarly a product of typical colonial expropriation. During the Japanese colonial period, Japanese capitalists initiated the construction of private farms which led to the national land development policy by the Governor-General of Korea. These landscape changes are indicative of resource capitalism depicted by the expansion of agricultural production value by the application of resource capital to undeveloped natural space for economic viability. As a result, the hierarchical structure was magnified resulting to the exacerbation of community and economic structural imbalances which presents an alternative yet related perspective to the evolution of landscapes during the Japanese colonial period. In addition, considering Daesan Plain's vulnerability to changing weather conditions, natural processes have also been a factor to its landscape transformation. Such occurrences endanger the sustainability of the area as when floods inundate cultivated lands and render them unstable, endangering residents, as well as the harvests. In conclusion, the Daesan Plain originally took the form of a hydrophilic landscape and started significantly evolving into a rural landscape since the Japanese colonial period. Human-induced land development and geophysical processes significantly impacted this transformation which also exemplifies the several ways of how undeveloped natural landscapes turn into mechanized and capitalized rural landscapes by colonial resource capitalism and development policies.

A Study of the Management of Groundwater Reservoir by Numerical Three Dimensional Flow Model (3차원 흐름모델을 이용한 지하저수지의 관리에 대한 연구)

  • 신방웅;김희성
    • The Journal of Engineering Geology
    • /
    • v.5 no.3
    • /
    • pp.289-300
    • /
    • 1995
  • At the initial stage of the underground reservoir design one should thoroughly consider surface and subsurface hydrology, hydrogeologic characteristics of aquifer system, and the function of cut - off wall because it is linked to the effective management. In this study, three dimensional finite difference model was applied to analyse the function of Ian underground reservoir at Kyungbuk Province. The steady and unsteady state conditions after construction of the underground dam were simulated through the model, and from these results the groundwater budget and the safe yield were determined. The model simulation indicates the infiltration of irrigation water to be one of the major factors of seasonal fluctuation of groundwater level. The recharge rates of irrigation water were estimated as 4.3mm/d during May and June, and 1.7mm/d during July and Agust. Groundwater recharge from the watershed area estimated to about $0.04m^3/s$, almost consistent through the year. In 1984, groundwater discharge through the transverse section of the dam was $0.002m^3/s$ and the optimum yield for two momths(July and Aguest)was $254000m^3$, however, the discharge became $0.013m^3/s$ in1993, implying the failure of cut -off function. without appropaiate of the cut - off wall, optiumum yield during the irrigaton period would be $93, 000m^3$.

  • PDF

Factor Analyses for Water Quality Indicators of Streams, Ground Water, and Reservoir in Agricultural Small Catchments of the Han River Basin

  • Park, C-S;Joo, J-H;Jung, Y-S;Yang, J-E
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.5
    • /
    • pp.382-393
    • /
    • 2000
  • The principal indicators contributing to water qualities was screened by factor analyses, based on the monitored chemical parameters of water quality for various water resources from 1995 to 1999 in the small agricultural catchments of the Han River Basin. Water samples of streams, groundwaters, and reservoirs were taken four times a year from upper (Daegwanryong), middle (Dunnae and Chunchon) and lower (Guri) reaches of Han River Basin. In these areas, the respective type of farming practiced was alpine agriculture and livestocks raising, typical upland and paddy cultivation, and intensive cropping in the plastic film house. Water quality was monitored for twenty-one water quality parameters, including pH, EC, SS, T-N, T-P, COD, cations, anions, and heavy metals. pH, EC and COD of the stream waters were suitable for the Korea irrigation water quality guidelines. However, T-N and T-P concentrations of water samples in four catchments far exceeded the irrigation water guideline. Concentrations of canons and heavy metals in Wangsuk stream in Guri area were higher than those in streams in other areas. Factor analysis revealed that significant correlation was observed for 81 pairs out of 231 water quality indicators of stream water among the $21\;{\times}\;21$ cross correlation matrix of stream water quality indicators. The first factor accounted for 27.01% of the total variation in stream water quality indicators, and high positive factor loadings were shown on EC, K, Na, $NH_4\;^+-N$, $PO_4\;^{3-}$, $SO_4\;^{2-}$, and COD. Fifty-three water quality indicator pairs were significant out of 190 ground water quality parameters. The first factor accounted for 28.54% of the total variation in ground water quality indicators, and high loadings were revealed on EC, Ca, Mg, K, Na, $NH_4\;^+-N$, and $SO_4$. Twenty-nine pairs of reservoir water quality indicators were significant out of 66 pairs. The first factor accounted for 37.06% of the total variation in reservoir water quality indicators, and high loadings were shown on EC, Mg, K, Na, SS, T-P, Cl, and COD. These results demonstrate that EC was the first factor contributing to water quality.

  • PDF

Assessment of domestic water supply potential of agricultural reservoirs in rural area considering economic index (경제성 지표를 활용한 농업용저수지의 생활용수 공급가능성 평가)

  • Yoon, Kwang-Sik;Choi, Soo-Myung;Chai, Jong-Hun;Yoo, Seung-Hwan;Choi, Dong-Ho;Yoon, Suk-Gun;Lee, Chang-Hee;Jung, Kyung-Hun;Shin, Gil-Chai
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.1
    • /
    • pp.85-96
    • /
    • 2017
  • Existing agricultural reservoirs are considered as alternative source for the water welfare of rural area. In this study, domestic water supply potential of 476 reservoirs, which has storage capacity more than one million cubic meter, out of 3,377 agricultural reservoirs managed by Korean Rural Community Corporation (KRC) were investigated. Among them water quality of 136 reservoirs met the criteria of domestic water source which show less than COD 3 ppm. Available amount for domestic water of reservoirs, which meet the water quality, for ten year return period of drought was analyzed with reservoir water balance model. The results showed that 116 reservoirs has potential for supplementary domestic water supply while satisfying irrigation water supply. Finally, economic analysis using Net Present Value (NPV), Benefit-Cost (B/C) ratio, Internal Rate of Return (IRR), and Profitability Index (PI) methods was also conducted. The analysis showed that 19 reservoirs satisfied economic feasibility when water is provided from reservoir outlet but only 9 reservoirs meet the economic feasibility if water delivered from a reservoir to treatment plant by newly built conveyance canal. In order to supply the domestic water through the agricultural reservoirs managed by KRC, it is necessary to flexibly interpret and operate the 'Rearrangement of Agricultural and Fishing village Act'. Also, it is reasonable to participate in the water service business when there is a supply request from other Ministries. In addition, the KRC requires further effort to change the crop system for saving water and improve efficiency of irrigation systems.