• Title/Summary/Keyword: irrigation management

Search Result 634, Processing Time 0.025 seconds

DEVELOPMENT OF TRANSPLANT PRODUCTION IN CLOSED SYSTEM (PART II) - Irrigation Scheduling based on Evapotranspiration Rate-

  • Tateishi, M.;Murase, H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.764-769
    • /
    • 2000
  • A new transplant production system that produces high quality plug seedlings of specific crop has been studied. It is a plant factory designed to produce massive amount of virus free seedlings. The design concept for building this plant factory is to realize maximum energy efficiency and minimum initial investment and running cost. The basic production strategy is the sitespecific management. In this case, the management of the growth of individual plantlet is considered. This requires highly automated and information intensive production system in a closed aseptic environment the sterilized specific crops. One of the key components of this sophisticated system is the irrigation system. The conditions that this irrigation system has to satisfy are: 1. to perform the site specific crop management in irrigation and 2. to meet the no waste standard. The objective of this study is to develop an irrigation scheduling that can implement the no waste standard.

  • PDF

Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies (SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Yoon, Kwangsik;Choi, Dongho;Kim, Yongseok;Ryu, Jichul;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.

Water Management Program for TM/TC (물관리자동화시스템(TM/TC)을 위한 물관리프로그램 개발)

  • go, Gwang Don;Lim, Chang Young;Kwak, Yeong Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.790-793
    • /
    • 2004
  • TM/TC system is composed of control center, reservoirs, pumping stations and twelve canal systems. For this system we developed water management program which includes flood forecast program, drought reduction program, irrigation scheduling program and database program. With these program we expect that operators improve the irrigation efficiencies of the irrigation systems due to the timely irrigation on a right place, in a proper quantity and refute tile cost of maintenance and reduce flood and drought damages. In agricultural engineering respect, the databases including water level, rainfall, the amount of flowing can be useful to the researcher who make a study of hydrology and hydraulics in . rural area. Water management program records all of the TM/TC data to MDB format file per 10 minutes.

  • PDF

Development of the Information System for Management of Irrigation Facilities (농업수리시설물 관리를 위한 정보시스템 개발)

  • 고홍석;최진규;고남영;이주승
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.130-136
    • /
    • 1999
  • The management method of the irrigation facilities are different with management agency , type, user, purpose of use, and the accuracy of data applied for the grasp of present situation and maintenance is of a low grade. Therefore the information management system is needed to classify and systematize the data. The purpose of this study is to prepare the digital map of Chonbuk FLIA district, to construct the database of the irrigation facilities , to develop the information system for the management using World Wide Web, to supply and be able to use easily to whomever needs it.

  • PDF

Estimating Vulnerable Duration for Irrigation with Agricultural Water Supply and Demand during Residual Periods (농업용수의 잔여 공급계획량 및 수요예측량에 의한 관개 취약시기 산정)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.123-128
    • /
    • 2012
  • For optimal reservoir operation and management, there are essential elements including water supply in agricultural reservoir and demand in irrigation district. To estimate agricultural water demand and supply, many factors such as weather, crops, soil, growing conditions cultivation method and the watershed/irrigation area should be considered, however, there are occurred water supply impossible duration under the influence of the variability and uncertainty of meteorological and hydrological phenomenon. Focusing on agricultural reservoir, amount and tendency of agricultural water supply and demand shows seasonally/regionally different patterns. Through the analysis of deviation and changes in the timing of the two elements, duration in excess of water supply can be identified quantitatively. Here, we introduce an approach to assessment of irrigation vulnerable duration for effective management of agricultural reservoir using time dependent change analysis of residual water supply and irrigation water requirements. Irrigation vulnerable duration has been determined through the comparison of water supply in agricultural reservoir and demand in irrigation district based on the water budget analysis, therefore can be used as an improved and basis data for the effective and intensive water management.

Irrigation Frequency and Nitrogen Rates for Tall Fescue Growth

  • Lee, Sang-Kook
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.130-136
    • /
    • 2014
  • Tall fescue is commonly well-adapted for low maintain area because of its wear resistance, deep root system, and drought tolerances. Deep and infrequent irrigation refers to applying large amounts of irrigation, 1.3 to 2.5 cm or more, in a single irrigation event. Light and frequent irrigation is commonly used with small amounts of water, 0.3 to 0.6 cm, every day or every other day. N use for turfgrass management is often unnoticed for water management. The objective of this field study was to evaluate the effects of irrigation frequency and N rates for tall fescue growth. The three irrigation treatments were no irrigation (precipitation only), 0.5 cm applied every other day, and 1.8 cm applied once a week at one irrigation event. The nitrogen (N) treatments were the low, medium, and high N rate treatments. The low, medium, and high N treatments were applied over 2, 4, and 6 applications, respectively. If high main maintenance of tall fescue is not important and water source is limited, irrigation is not necessary and, the $9.8gNm^{-2}yr^{-1}$ of two applications can be recommended for tall fescue under the weather condition of the study.

Estimation of Irrigation Return Flow on Agricultural Watershed in Madun Reservoir (마둔저수지 농업유역의 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;Bang, Na-Kyoung;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.85-96
    • /
    • 2021
  • Irrigation return flow is defined as the excess of irrigation water that is not evapotranspirated by direct surface drainage, and which returns to an aquifer. It is important to quantitatively estimate the irrigation return flow of the water cycle in an agricultural watershed. However, the previous studies on irrigation return flow rates are limitations in quantifying the return flow rate by region. Therefore, simulating irrigation return flow by accounting for various water loss rates derived from agricultural practices is necessary while the hydrologic and hydraulic modeling of cultivated canal-irrigated watersheds. In this study, the irrigation return flow rate of agricultural water, especially for the entire agricultural watershed, was estimated using the SWMM (Storm Water Management Model) module from 2010 to 2019 for the Madun reservoir located in Anseong, Gyeonggi-do. The results of SWMM simulation and water balance analysis estimated irrigation return flow rate. The estimated average annual irrigation return flow ratio during the period from 2010 to 2019 was approximately 55.3% of the annual irrigation amounts of which 35.9% was rapid return flow and 19.4% was delayed return flow. Based on these results, the hydrologic and hydraulic modeling approach can provide a valuable approach for estimating the irrigation return flow under different hydrological and water management conditions.

Wireless Sensor Network Development using RFID for Agricultural Water Management (농업용수관리를 위한 RFID 기반 무선 센서 네트워크 개발)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Kim, Jin-Taek;La, Min-Chul
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.5
    • /
    • pp.43-51
    • /
    • 2011
  • Irrigation facilities are spread over demand area in a low density and exposed in the field requiring efficient operation and maintenance. Thus, it could be more efficient to manage an irrigation system when it is with wireless sensor network (WSN) using RFID (Radio Frequency Identification) application. A WSN, a kind of ubiquitous sensor network composed of wireless network, RFID and database management system was developed for agricultural water management in terms of operational status and maintenance requirements. Identification code for RFID tag was designed and an application for RFID reader was developed for field data collection, and a database management system was constructed for managing irrigation facility attributes. The system was installed in I-dong irrigation districts in Gyounggi-province, Korea and the operated results showed the applicability of the WSN for agricultural water management.

Development of an Automatic Irrigation Control System in Protected Horticulture (시설원예에 있어서 물관리 지동화 시스템 개발)

  • 김경수;이기명;장익주
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.61-71
    • /
    • 1992
  • This study is performed to develop an automatic irrigation control of system for effective water management in greenhouse. The automatic irrigation control system is composed of an IR-RED optical sensor in tensiometer and an One-chip micro controller. The following results are obtained : 1. A practical IR-RED optical sensor in tensiometer, which shows the starting point of irrigation, was developed. 2. The automatic irrigation system with the optical sensor and One-chip micro controller was developed and also designed to be able to combine with the control system for temperature, curtain opening, etc. 3. A multiple irrigation control system for several greenhouses were suggested. 4. The results of the system test with the driving program for automatic water management were excellent.

  • PDF

Optimal Water Management for Classified Irrigation Area of Agricultural Reservoir by using Optimization Programming (최적화기법에 의한 농업용 저수지의 관개면적별 최적용수관리)

  • 차상화
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.439-446
    • /
    • 2003
  • In this paper, the study area is selected Sungju Reservoir which was constructed with an agricultural purpose and determined the optimal water management plan among the five cases of classified irrigation area by using Linear Programming. As a results of reservoir operation, the additional water quantity of classified irrigation area showed 16.036${\times}$10$\^$6/m$^3$3/year, 19.404${\times}$10$\^$6/m$^3$/year, 18.864${\times}$100$\^$6/m$^3$/year, 4.032${\times}$10$\^$6/m$^3$/year and 0.672${\times}$10$\^$6/m$^3$/year and the total water supply quantity showed 69.628${\times}$10$\^$6/m$^3$/year, 70.048${\times}$10$\^$6/m$^3$/year, 67.979${\times}$10$\^$ 6/m$^3$/year, 67.979${\times}$10$\^$6/m$^3$/year, and 69.939${\times}$10$\^$6/m$^3$/year respectively. Therefore, the case-II was adopted with water management plan of optimum. It is also known that the maximum irrigation area augmentation effect appears in the case which will use the additional water quantity in field irrigation of the case-II which was adopted.